Oxford Revise AQA A Level Physics | Chapter 10 answers

Chapter 10: Circuits

Question

Answers

Extra information

Mark

AO

Spec reference

01.1

Solar cell in series with ammeter and variable resistor

Voltmeter in parallel with variable resistor (or solar cell)

1

1

3.5.1.6

AO1

01.2

Allow sensible suggestions:

Control light intensity

  • Use of lamp with shielding round solar cell (black card)

Control of temperature

  • Turn light on for short periods when taking reading and leave to cool
  • Place a clear container with water between the solar cell and light source

1 mark for how to control light intensity

1 mark for control of temperature

1

1

PS1.1

AO3

01.3

Change the resistance of the circuit using the variable resistance and record a series of potential difference and current readings

Plot a graph of p.d. against current

The y-intercept is the e.m.f

The gradient is the (negative) internal resistance

1

1

1

1

3.5.1.6

AO2

01.4

The e.m.f depends on the light intensity/temperature so they can only quote a value for average conditions

Any sensible suggestion

1

3.5.1.6

AO3

01.5

Use of ε = I (R + r) or recognising ε = 8.2 V

ε = IR + Ir = V + Ir

8.2 = 5.5 + (0.1 × r)

2.7 = 0.1r

r = 27 Ω

1

1

1

3.5.1.6

AO2

02.1

The current flowing into a junction must equal the current flowing out of the junction (owtte)

1

3.5.1.4

AO1

02.2

The sum of the p.d.s in a closed loop must equal the sum of e.m.f.s in that loop (owtte)

1

3.5.1.4

AO1

02.3

Bulbs in series, so same current flows into each

\(
\begin{array}{l}
\textrm{Use of or mention } P = I^2 R (\textrm{or }P = VI\ \rm{or}\ \textit{P} = \frac{V^2}{R})\\
\textrm{Since}\ I\ \textrm{constant}\ P \propto R\ \textrm{so}\ \textbf{A}\ \textrm{must have greater resistance}\\
\end{array}
\)

1

1

1

3.5.1.4

AO2

02.4

Bulbs in parallel so this time p.d. the same

\(
\begin{array}{l}
P = \frac{V^2}{R}\\
\textrm{Since }V\textrm{ constant }P \propto \frac{1}{R}\\
\end{array}
\)

Bulb B brightest

If they think B has the higher resistance, then allow e.c.f if correct reasoning applied

1

1

1

3.5.1.4

AO2

03.1

1 litre = 1000 cm3

191 litres per hour = 53 cm3 s–1

mass per second = ρV = 1000 × 53 × 10–6 = 0.053 kg s–1

1

1

3.4.2.1

AO2

03.2

\(
\begin{array}{l}
P = \frac{\Delta w}{\Delta t}\ \rm{or}\ \textit{E}_{p} = \textit{mgh}\\
P = 0.053 \times 9.81 \times 0.3 = 0.16\ \rm{W}\\
\end{array}
\)

1

1

3.4.1.7

3.4.1.8

AO2

03.3

\(
\begin{array}{l}
P = VI\\
I = \frac{1.2}{5} = 0.24\ \rm{A}\\
\end{array}
\)

1

3.5.1.4

AO1

03.4

\(
\begin{array}{l}
\textrm{Use of } \epsilon = I(R + r)\\
\epsilon = IR + Ir = V + Ir\\
6 = 5 + (0.24 \times r)\\
1 = 0.24 r\\
r = 4.2 \Omega\\
\end{array}
\)

OR

\(
\begin{array}{l}
\textrm{Resistance of pump }R = \frac{V}{I} = \frac{5}{0.24} = 20.8 \Omega\\
\epsilon = I\ (R + r)\\
6 = 0.24\ (20.8 + r)\\
6 = 5 + 0.24 r\\
\end{array}
\)

1

1

1

3.5.1.4

AO2

04.1

\(
\begin{array}{l}
P = VI\\
\textbf{A:}\,I = \frac{0.7}{3.5} = 0.2\ \rm{A}\\
\textbf{B:}\,I = \frac{1.95}{6.5} = 0.3\ \rm{A}\\
\textbf{C:}\,I = \frac{0.3}{1.5} = 0.2\ \rm{A}\\
\end{array}
\)

1

1

1

3.5.1.4

AO1

04.2

I = 0.2 A + 0.3 A + 0.2 A = 0.7 A

1

3.5.1.4

AO2

04.3

\(
\begin{array}{l}
\textrm{p.d. across }R_1 = 9.0 – 6.5 = 2.5\ \textrm{V}\\
R_1 = \frac{V}{I} = \frac{2.5}{0.7} = 3.6\ \Omega\\
\end{array}
\)

Allow e.c.f from answer to 04.2

1

1

3.5.1.4

AO2

04.4

\(
\begin{array}{l}
\textrm{p.d. across }R_3 = 6.5 – 1.5 = 5.0\ \textrm{V}\\
R_3 = \frac{V}{I} = \frac{0.5}{0.2} = 25\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO2

05.1

In series:

ε = 1.5 V + 1.5 V = 3.0 V

r = 0.5 Ω + 0.5 Ω = 1.0 Ω

1

1

3.5.1.4

AO1

05.2

In parallel:

\(
\begin{array}{l}
\epsilon = 1.5\ \rm{V}\\
r = {\left( {\frac{1}{0.5} + \frac{1}{0.5}} \right)^{-1}} = 0.25\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO1

05.3

Two cells in parallel with one cell in series

1

3.5.1.4

AO2

05.4

\(
\begin{array}{l}
\textrm{Use of }\epsilon = I(R + r)\ \rm{or}\ r = \frac{3}{4} = 0.75\ \Omega\\
3.0 = I\ (2.0 + 0.75)\\
I = 1.1\ \rm{A}\\
\end{array}
\)

1

1

3.5.1.6

AO2

05.5

\(
\begin{array}{l}
P = I^2 R = 1.1^2 \times 2\\
= 2.4\ \rm{W}\\
\end{array}
\)

1

1

3.5.1.4

AO2

06.1

Diagram showing 3 resistors connected in series

1

3.5.1.4

AO1

06.2

Total resistance = 33 Ω + 110 Ω + 67 Ω = 210 Ω

1

3.5.1.4

AO1

06.3

Diagram showing three resistors connected in parallel

1

3.5.1.4

AO1

06.4

\(
\begin{array}{l}
\textrm{Total resistance } = {\left( {\frac{1}{110} + \frac{1}{67} + \frac{1}{33}} \right)^{-1}}\\
R = 18\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO1

06.5

Diagram showing two 33 Ω resistors in series and also in parallel with two other 33 Ω resistors in series

1

3.5.1.4

AO2

06.6

Smaller current through each resistor/less power transferred by each resistor/still resistance if 1 resistor breaks

Accept any sensible suggestion

1

3.5.1.4

AO3

07.1

\(
\begin{array}{l}
P = \frac{V^2}{R}\\
R = \frac{V^2}{P} = \frac{12^2}{50} = 2.9\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO1

07.2

\(
\begin{array}{l}
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots\\
\frac{1}{2.9} = \frac{8}{R}\\
R = 8 \times 22.9 = 23.2\ \Omega\ (23.0\ \textrm{if you use unrounded number})\\
\end{array}
\)

1

1

3.5.1.4

AO1

07.3

\(
\begin{array}{l}
R = \frac{\rho l}{A}\\
A = \frac{\rho l}{R}\\
A = d \times 0.003\ \rm{m}\\
d = 1.1 \times 10^{-5} \times \frac{0.75}{23} \div 0.003 = 0.12\ \rm{mm}\\
\end{array}
\)

1

1

3.5.1.3

AO2

07.4

5 μΩ cm = 5 × 10–6 cm = 5 × 10–8 Ω m

1

3.1.1

AO2

07.5

This 1 cm strip will have a much lower resistance, \(R \propto p\)

But the strip is 75 cm long so will not affect overall resistance

owtte

1

1

3.1.3

AO3

08.1

LDR and resistor drawn in series, correct symbols

Some indication that VOUT is across the fixed resistor

1

1

3.5.1.5

AO2

08.2

The resistance of the LDR decreases so current increases

The p.d. across the fixed resistor increases since current increases, V = IR/has a greater share of the total resistance so p.d. increases

This first mark maybe given even if VOUT wrongly labelled in 08.1

1

1

3.5.1.5

AO2

08.3

Examples of calculation:

\(
\begin{array}{l}
1\ \rm{M}\Omega:\\
\rm{Dark}\ V_{\rm{out}} = \frac{1 \times 10^6}{1 \times 10^6 + 1 \times 10^6} \times 6 = 3\ \rm{V}\\
\rm{Light}\ V_{\rm{out}} = \frac{1 \times 10^6}{1 \times 10^6 + 5400} \times 6 = 6\ \rm{V}\\
10\ \rm{k}\Omega:\\
\rm{Dark}\ V_{\rm{out}} = \frac{1 \times 10^4}{1 \times 10^4 + 1 \times 10^6} \times 6 = 0.06\ \rm{V}\\
\rm{Light}\ V_{\rm{out}} = \frac{1 \times 10^4}{1 \times 10^4 + 5400} \times 6 = 4\ \rm{V}\\
1\ \rm{k}\Omega:\\
\rm{Dark}\ V_{\rm{out}} = \frac{1 \times 10^3}{1 \times 10^3 + 1 \times 10^6} \times 6 = 0.006\ V\\
\rm{Light}\ V_{\rm{out}} = \frac{1 \times 10^3}{1 \times 10^3 + 5400} \times 6 = 0.9\ V\\
10\ \rm{k}\Omega\textrm{ has the greatest range}\\
\end{array}
\)

3 marks max for examples of calculations

1 mark for correct deduction with explanation

max 4

3.5.1.5

AO2 × 2

AO3 × 2

Skills box answers

Question

Answer

1

A circuit diagram where a battery with e.m.f. (ε) and internal resistance (r) is connected to a variable external resistance (R). A voltmeter is connected across the battery, and an ammeter (A) is placed between the external resistance (R) and the battery. The current (I) flows clockwise from the battery through the external resistor. he terminal potential difference (p.d.), is V.

2

Circuit is connected as briefly as possible to prevent the cell heating up, which would alter the resistance.

3

e.m.f = 3.15 V, resistance = 15 Ω (The gradient is in \(\frac{\rm{V}}{\rm{mA}}\) so need to multiply by 103 to obtain Ω.)

Loading...