

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Solar cell in series with ammeter and variable resistor Voltmeter in parallel with variable resistor (or solar cell)		1 1	3.5.1.6 AO1
01.2	 Allow sensible suggestions: Control light intensity Use of lamp with shielding round solar cell (black card) Control of temperature Turn light on for short periods when taking reading and leave to cool Place a clear container with water between the solar cell and light source 	1 mark for how to control light intensity 1 mark for control of temperature	1	PS1.1 AO3
01.3	Change the resistance of the circuit using the variable resistance and record a series of potential difference and current readings Plot a graph of p.d. against current The <i>y</i> -intercept is the e.m.f. The gradient is the (negative) internal resistance		1 1 1 1	3.5.1.6 AO2
01.4	The e.m.f. depends on the light intensity/temperature so they can only quote a value for average conditions	Any sensible suggestion	1	3.5.1.6 AO3
01.5	Use of $\varepsilon = I (R + r)$ or recognising $\varepsilon = 8.2 V$ $\varepsilon = IR + Ir = V + Ir$ $8.2 = 5.5 + (0.1 \times r)$ 2.7 = 0.1r $r = 27 \Omega$		1 1 1	3.5.1.6 AO2
02.1	The current flowing into a junction must equal the current flowing out of the junction (owtte)		1	3.5.1.4 AO1
02.2	The sum of the p.d.s in a closed loop must equal the sum of e.m.f.s in that loop (owtte)		1	3.5.1.4 AO1

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.3	Bulbs in series, so same current flows into each Use of or mention $P = I^2 R$ (or $P = VI$ or $P = \frac{V^2}{R}$) Since <i>I</i> constant $P \propto R$ so A must have greater resistance		1 1 1	3.5.1.4 AO2
02.4	Bulbs in parallel so this time p.d. the same $P = \frac{V^2}{R}$ Since V constant $P \propto \frac{1}{R}$ Bulb B brightest	If they think B has the higher resistance, then allow e.c.f. if correct reasoning applied	1 1 1	3.5.1.4 AO2
03.1	1 litre = 1000 cm ³ 191 litres per hour = 53 cm ³ s ⁻¹ mass per second = ρV =1000 × 53×10 ⁻⁶ = 0.053 kg s ⁻¹		1 1	3.4.2.1 AO2
03.2	$P = \frac{\Delta W}{\Delta t} \text{ or } E_{p} = mgh$ $P = 0.053 \times 9.81 \times 0.3 = 0.16 \text{ W}$		1 1	3.4.1.7 3.4.1.8 AO2
03.3	P = VI $I = \frac{1.2}{5} = 0.24 \text{ A}$		1	3.5.1.4 AO1
03.4	Use of $\varepsilon = I(R + r)$ $\varepsilon = IR + Ir = V + Ir$ $6 = 5 + (0.24 \times r)$ 1 = 0.24r $r = 4.2\Omega$ OR Resistance of pump $R = \frac{V}{I} = \frac{5}{0.24} = 20.8\Omega$ $\varepsilon = I(R + r)$ 6 = 0.24(20.8 + r) 6 = 5 + 0.24r		1 1 1	3.5.1.4 AO2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO Spec reference
04.1	P = VI A : $I = \frac{0.7}{3.5} = 0.2 \text{ A}$ b : $I = \frac{1.95}{3.5} = 0.2 \text{ A}$		1	3.5.1.4 AO1
	$\mathbf{B}: I = \frac{1.95}{6.5} = 0.3 \text{ A}$ $\mathbf{C}: I = \frac{0.3}{1.5} = 0.2 \text{ A}$		1 1	
04.2	<i>I</i> = 0.2 A + 0.3 A + 0.2 A = 0.7 A		1	3.5.1.4 AO2
04.3	p.d. across $R_1 = 9.0 - 6.5 = 2.5 V$ $R_1 = \frac{V}{I} = \frac{2.5}{0.7} = 3.6 \Omega$	Allow e.c.f. from answer to 04.2	1 1	3.5.1.4 AO2
04.4	p.d. across $R_3 = 6.5 - 1.5 = 5.0 \text{ V}$ $R_3 = \frac{V}{I} = \frac{5.0}{0.2} = 25 \Omega$		1 1	3.5.1.4 AO2
05.1	In series: $\epsilon = 1.5 V + 1.5 V = 3.0 V$ $r = 0.5 \Omega + 0.5 \Omega = 1.0 \Omega$		1 1	3.5.1.4 AO1
05.2	In parallel: $\varepsilon = 1.5 V$ $r = \left(\frac{1}{0.5} + \frac{1}{0.5}\right)^{-1} = 0.25 \Omega$		1 1	3.5.1.4 AO1
05.3	Two cells in parallel with one cell in series		1	3.5.1.4 AO2
05.4	Use of $\varepsilon = I(R + r)$ or $r = \frac{3}{4} = 0.75 \Omega$ 3.0 = $I(2.0 + 0.75)$ I = 1.1 A		1 1	3.5.1.6 AO2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.5	$P = I^2 R = 1.1^2 \times 2$ $= 2.4 W$		1 1	3.5.1.4 AO2
06.1	Diagram showing 3 resistors connected in series		1	3.5.1.4 AO1
06.2	Total resistance = $33 \Omega + 110 \Omega + 67 \Omega = 210 \Omega$		1	3.5.1.4 AO1
06.3	Diagram showing three resistors connected in parallel		1	3.5.1.4 AO1
06.4	Total resistance = $\left(\frac{1}{110} + \frac{1}{67} + \frac{1}{33}\right)^{-1}$ R = 18 Ω		1 1	3.5.1.4 AO1
06.5	Diagram showing two 33 Ω resistors in series and also in parallel with two other 33 Ω resistors in series		1	3.5.1.4 AO2
06.6	Smaller current through each resistor/less power transferred by each resistor/still resistance if 1 resistor breaks	Accept any sensible suggestion	1	3.5.1.4 AO3
07.1	$P = \frac{V_2}{R}$ R = $\frac{V_2}{P} = \frac{12^2}{50} = 2.9 \Omega$		1 1	3.5.1.4 AO1
07.2	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$ $\frac{1}{2.9} = \frac{8}{R}$ $R = 8 \times 22.9 = 23.2 \Omega$ (23.0 if you use unrounded number)		1 1	3.5.1.4 AO1

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

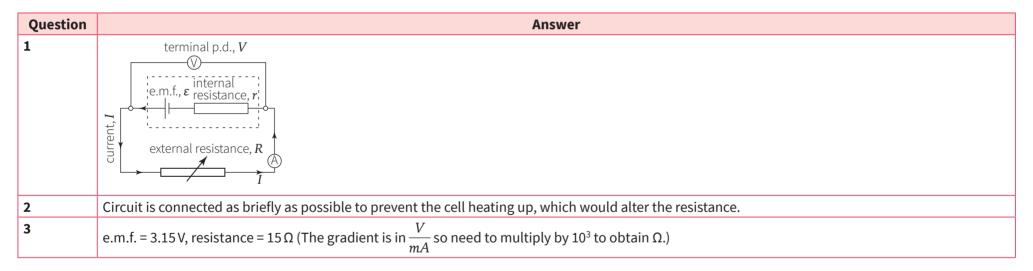
Question	Answers	Extra information	Mark	AO Spec reference
07.3	$R = \frac{\rho L}{A}$		1	3.5.1.3 AO2
	$A = \frac{\rho L}{A}$ $A = d \times 0.003 \text{ m}$ $d = 1.1 \times 10^{-5} \times \frac{0.75}{23} \div 0.003 = 0.12 \text{ mm}$		1	
07.4	5μΩcm = 5×10 ⁻⁶ cm = 5×10 ⁻⁸ Ωm		1	3.1.1. AO2
07.5	This 1 cm strip will have a much lower resistance, $R \propto \rho$ But the strip is 75 cm long so will not affect overall resistance	owtte	1 1	3.1.3 AO3
08.1	LDR and resistor drawn in series, correct symbols Some indication that $V_{\rm OUT}$ is across the fixed resistor		1 1	3.5.1.5 AO2
08.2	The resistance of the LDR decreases so current increases The p.d. across the fixed resistor increases since current increases, <i>V</i> = <i>IR</i> /has a greater share of the total resistance so p.d. increases	This first mark maybe given even if $V_{ m OUT}$ wrongly labelled in 08.1	1 1	3.5.1.5 AO2
08.3	Examples of calculation: $1M\Omega$: Dark $V_{out} = \frac{1 \times 10^6}{1 \times 10^6 + 1 \times 10^6} \times 6 = 3V$ Light $V_{out} = \frac{1 \times 10^6}{1 \times 10^6 + 5400} \times 6 = 6V$ $10 \text{ k}\Omega$: Dark $V_{out} = \frac{1 \times 10^4}{1 \times 10^4 + 1 \times 10^6} \times 6 = 0.06V$ Light $V_{out} = \frac{1 \times 10^4}{1 \times 10^4 + 5400} \times 6 = 4V$	3 marks max for examples of calculations	max 4	3.5.1.5 AO2 × 2 AO3 × 2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲



Question	Answers	Extra information	Mark	AO Spec reference
	1 kΩ:			
	Dark $V_{\text{out}} = \frac{1 \times 10^{-7}}{1 \times 10^{3} + 1 \times 10^{6}} \times 6 = 0.006 \text{ V}$			
	Dark $V_{\text{out}} = \frac{1 \times 10^3}{1 \times 10^3 + 1 \times 10^6} \times 6 = 0.006 \text{ V}$ Light $V_{\text{out}} = \frac{1 \times 10^3}{1 \times 10^3 + 5400} \times 6 = 0.9 \text{ V}$			
	$10k\Omega$ has the greatest range	1 mark for correct deduction with explanation		

۲

Skills box answers

۲

