LaTeX_Divi Visual Builder

\(
\begin{aligned}
(1+a+b) G_\lambda(a, b)=1 & +\lambda \int_0^{\infty} d p\left(\frac{G_\lambda(p, b)-G_\lambda(a, b)}{p-a}+\frac{G_\lambda(a, b)}{1+p}\right) \\
& +\lambda \int_0^{\infty} d q\left(\frac{G_\lambda(a, q)-G_\lambda(a, b)}{q-b}+\frac{G_\lambda(a, b)}{1+q}\right) \\
& -\lambda^2 \int_0^{\infty} d p \int_0^{\infty} d q \frac{G_\lambda(a, b) G_\lambda(p, q)-G_\lambda(a, q) G_\lambda(p, b)}{(p-a)(q-b)}
\end{aligned}
\)

Inline mode

An inline expression occurs in the middle of the text, it employs the following syntax:

n.b.

  • Adjust the size of an inline equation using ‘displaystyle’ or using ‘large, Large, LARGE’ commands:
    • This is a larger inline equation: \( \displaystyle E = mc^2 \).
    • This is a larger inline equation: \(\Large E = mc^2 \).
  • If using the ‘Divi builder’ the LaTeX equation needs to be pasted in along with the surrounding sentence or the equation corrupts.

Examples:

According to Einstein’s theory of relativity, the equation \( E = mc^2 \) expresses the relationship between energy (E), mass (m), and the speed of light (c)

Another inline example \( \frac{2 \sqrt{15} \times 2 \sqrt{5}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{2 \sqrt{75}}{\sqrt{3}}=2 \sqrt{\frac{75}{3}}=2 \sqrt{25}=2 \times 5=10 \) showing a large inline equation.

Block mode

If you want your equation to be horizontally centred of the page, on it’s own row your equation may be written as follows:

$$
\frac{2 \sqrt{15} \times 2 \sqrt{5}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{2 \sqrt{75}}{\sqrt{3}}=2 \sqrt{\frac{75}{3}}=2 \sqrt{25}=2 \times 5=10
$$

\begin{equation}
\frac{2 \sqrt{15} \times 2 \sqrt{5}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{2 \sqrt{75}}{\sqrt{3}}=2 \sqrt{\frac{75}{3}}=2 \sqrt{25}=2 \times 5=10
\end{equation}

Pasted in latex (text tab):

\( \frac{2 \sqrt{15} \times 2 \sqrt{5}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{2 \sqrt{75}}{\sqrt{3}}=2 \sqrt{\frac{75}{3}}=2 \sqrt{25}=2 \times 5=10 \)

Pasted in latex (visual tab):

\( \frac{2 \sqrt{15} \times 2 \sqrt{5}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{2 \sqrt{75}}{\sqrt{3}}=2 \sqrt{\frac{75}{3}}=2 \sqrt{25}=2 \times 5=10 \)

Code using BG and FG colours

\(\LaTeX&bg=ffcccc&fg=cc00ff&s=4$\)

Pasted in latex (text tab):

\( \frac{2 \sqrt{15} \times 2 \sqrt{5}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{2 \sqrt{75}}{\sqrt{3}}=2 \sqrt{\frac{75}{3}}=2 \sqrt{25}=2 \times 5=10 \)

Pasted in latex (visual tab):

\( \frac{2 \sqrt{15} \times 2 \sqrt{5}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{4 \sqrt{75}}{2 \sqrt{3}}=\frac{2 \sqrt{75}}{\sqrt{3}}=2 \sqrt{\frac{75}{3}}=2 \sqrt{25}=2 \times 5=10 \)
Loading...