

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 22 Similarity and congruence

Question	Answer	Extra information	Marks
22.1 (a)	DF = 24 cm		1
22.1 (b)	$CAB = 75^{\circ}$		1
22.2	$\angle DCE = \angle ACB$ (opposite angles) $\angle DEC = \angle CAB$ (alternate interior angles) $\angle EDC = \angle ABC$ (alternate interior angles) AB = DE is given Thus, by ASA, the triangles are congruent.	$\angle DCE = \angle ACB$ $\angle DEC = \angle CAB$ $\angle EDC = \angle ABC$ Use of ASA test for congruency	1 1 1 1
22.3	AB = DC (opposite sides of a parallelogram) Angle FEH = angle FGH (diagonally opposite angles of a parallelogram) Angle GAB = angle CJB (corresponding angles) and angle CJB = angle DCE (alternate angles) Therefore, angle GAB = angle DCE Triangles ABG and CDE are congruent because of AAS (Angle Angle Side).	AB = DC with reason Angle FEH = angle FGH with reason Angle GAB = angle DCE with reason(s) or for angle EDC = angle GBA with reason(s) All three conditions stated with reasons, along with conclusion e.g. AAS or ASA.	1 1 1
22.4	The ratio of corresponding sides is 1.5 for all three pairs: $\frac{19.5}{13} = \frac{18}{12} = \frac{7.5}{5} = 1.5$ Therefore, the triangles are similar.	Comparing at least two pairs of sides Scale factor of 1.5 with conclusion	1 1

Question	Answer	Extra information	Marks
22.5	$\frac{AC}{AB} = \frac{AD}{AE}$ $\frac{11.5}{9.2} = \frac{AD}{8.4}$ $AD = \frac{8.4 \times 11.5}{9.2} = 10.5$ $ED = AD - AE = 10.5 - 8.4 = 2.1 \mathrm{cm}$	Comparing ratios of two pairs of sides Correct answer of 2.1 cm	1 1
22.6	Length scale factor = $22 \div 10 = 2.2$ Therefore, volume scale factor = $2.2^3 = 10.648$ Mass is proportional to volume. Mass of B = $1.5 \times 10.648 = 15.972$ kg	Length scale factor of 2.2 Volume (or mass) scale factor of 10.648 Correct final answer	1 1 1
22.7	Area scale factor = $50 \div 12.5 = 4$ Therefore, length scale factor = $\sqrt{4} = 2$ Base length of shape B = $4 \times 2 = 8$ cm	$50 \div 12.5 = 4$ Length scale factor $= \sqrt{4} = 2$ Correct final answer	1 1 1
22.8	Volume scale factor = $675 \div 25 = 27$ Therefore, the length scale factor = $\sqrt[3]{27} = 3$ This makes the surface area scale factor $3^2 = 9$ Smaller solid's surface area = $360 \div 9 = 40$ cm ²	Length scale factor = $\sqrt[3]{27} = 3$ Surface area scale factor $3^2 = 9$ Correct final answer	1 1 1

Question	Answer	Extra information	Marks
22.9	80 × 0.75 = 60, and 120 × 0.75 = 90 Medium trapezoid has height 0.75 <i>h</i> , and parallel sides of length 60 and 90 Area of medium trapezium: $\frac{1}{2} \times (60+90) \times 0.75h = 56.25h$ $0.75h \times 0.5 = 0.375h$ $60 \times 0.5 = 30$ $90 \times 0.5 = 45$ Small trapezium has height 0.375 <i>h</i> and parallel sides of length 30 and 45 Area of small trapezium: $\frac{1}{2} \times (30+45) \times 0.375h = 14.0625h$ 56.25h - 14.0625h = 4050 42.1875h = 4050 h = 96 cm	0.75 <i>h</i> or 60 or 90 0.5 × 0.75 <i>h</i> or 0.5 × 60, or 0.5 × 90 Attempt to use trapezium area formula Subtracting small from medium area Correct final answer	1 1 1 1

Question	Answer	Extra information	Marks
22.10	Let the height of the portion of the cone that was cut off be <i>h</i> . $\frac{24}{18} = \frac{36+h}{h}$ since the cones are similar $24h = 648 + 18h$ $h = 108 \text{ mm}$ Radius of large cone = $24 \div 2 = 12$ Radius of small cone = $18 \div 2 = 9$ Volume of large cone = $\frac{1}{3}\pi \times 12^2 \times (36+108) = 6912\pi$ Volume of small cone = $\frac{1}{3}\pi \times 9^2 \times 108 = 2916\pi$ Volume of frustum = $6912\pi - 2916\pi = 3996\pi \text{ mm}^3$	Attempt to find h by equating ratios of corresponding lengths Solving to find h Using your value of h to find the volume of either the small cone or the large cone Finding both volumes and subtracting Correct final answer in terms of π .	1 1 1 1
22.11	B = 1.2A B = 0.4C So, 1.2A = 0.4C $A = \frac{0.4}{1.2}C = \frac{1}{3}C$	B = 1.2A or $B = 0.4CEquates answersCorrect answer in simplest form$	1 1 1
22.12	Volume ratio = $125:8$ Length ratio = $\sqrt[3]{125}:\sqrt[3]{8} = 5:2$ Area ratio = $5^2:2^2 = 25:4$ Surface area of $J = 460 \div 4 \times 25 = 2875$ cm ²	Cube roots the volume ratio Squares this answer Correct calculation Correct final answer, showing all working	1 1 1 1

Question	Answer	Extra information	Marks
22.13	Create triangle <i>CAD</i> , by introducing point <i>D</i> , the midpoint of <i>AB</i> . The base of triangle <i>CAD</i> is thus 3 cm $\cos CAB = \frac{3}{15}$ $CAB = 78.5^{\circ} (1 \text{ dp})$	Create triangle <i>CAD</i> Use the cosine ratio Find the angle to 1 dp	1 1 1
22.14	Let the width be w . Then the length is $2w$ Area = length × width = $w \times 2w = 2w^2$ $2w^2 = 20$ $w^2 = 10$ $w = \sqrt{10}$ Therefore, the length = $2\sqrt{10}$ cm	Attributing variables to the length and width Using the area formula Solving for the width Correct final answer for the length	1 1 1 1