

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 10 Quadratic graphs, iterations, solving quadratic inequalities

Question	Answer	Extra information	Marks
10.1 (a)	$ \begin{array}{c} x^2 - 4 \leq -3 \\ x^2 - 1 \leq 0 \\ \text{Solution is} -1 \leq x \leq 1 \\ \leftarrow + + + + + + + + + + + + + + + + + + +$	Finding –1 and 1 Correct solution Correct number line representation	1 1 1
10.1 (b)	$7x^{2} \ge 28$ $x^{2} \ge 4$ $x^{2} - 4 \ge 0$ Solution is $x \le -2$ or $x \ge 2$ $-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6$	Finding –2 and 2 Correct solution (using "or", not "and") Correct number line representation	1 1 1
10.2 (a)	$x^{2}-8x+15 \leq 0$ $(x-5)(x-3) \leq 0$ Roots are 3 and 5 The quadratic is U shaped, so the solution is the set of numbers between 3 and 5, inclusive. In set notation, $\{x: 3 \leq x \leq 5\}$	Factorising or attempting to solve the quadratic Finding 3 and 5 Correct solution shown on a graph Correct solution in set notation	1 1 1 1

Question	Answer	Extra information	Marks
10.2 (b)	$3x^{2} - x - 4 > 0$ $(3x - 4)(x + 1) > 0$ Roots are $\frac{4}{3}$ and -1 The quadratic is U shaped, so the solution is the set of numbers less than -1 and greater than $\frac{4}{3}$ exclusive. In set notation, $\{x : x < -1\} \cup \{x : x > \frac{4}{3}\}$	Factorising or attempting to solve the quadratic Finding $\frac{4}{3}$ and -1 Correct solution shown on a graph Correct solution in set notation	1 1 1 1
10.2 (c)	$\begin{aligned} x^2 - 30 < -7x \\ x^2 + 7x - 30 < 0 \\ (x+10)(x-3) < 0 \\ \text{Roots are 3 and } -10 \\ \text{The quadratic is U shaped, so the solution is the set of numbers between } -10 \text{ and } 3, \text{ exclusive.} \\ \text{In set notation, } & \{x: -10 < x < 3\} \end{aligned}$	Factorising or attempting to solve the quadratic Finding 3 and –10 Correct solution shown on a graph Correct solution in set notation	1 1 1 1
10.3	$2n+7 \ge 3 \qquad \frac{12-n}{n^2} > 1$ $2n \ge -4 \qquad 12-n > n^2$ $n \ge -2 \qquad n^2 + n - 12 < 0$ (n+4)(n-3) < 0 -4 < n < 3 Both are satisfied when $-2 \le n < 3$	Correct method to solve $2n + 7 \ge 3$ Rearrange $\frac{12-n}{n^2} > 1$ to a suitable inequality Method to solve quadratic inequality -4 < n < 3 $-2 \le n < 3$	1 1 1 1 1

Question	Answer	Extra information	Marks
10.4	$14 < \frac{w^2 - 7}{3} < 31$ $42 < w^2 - 7 < 93$ $49 < w^2 < 100$ $w^2 < 100 \Rightarrow -10 < w < 10$ $w^2 > 49 \Rightarrow w < -7, w > 7$ Both are satisfied when $-10 < w < -7$ and also when 7 < w < 10	Correct method to rearrange for w^2 $49 < w^2 < 100$ -10 and 10, or -7 and 7 -10 < w < -7 or $7 < w < 10Both inequality statements$	1 1 1 1 1
10.5 (a)	When $x = 2$, $x^4 - 12x = -8$ When $x = 3$, $x^4 - 12x = 45$ As there is a change of sign, there is a root (solution) between 2 and 3	Substituting in 2 and 3 Correct conclusion	1 1
10.5 (b)	$x_0 = 2$ $x_1 = \sqrt[4]{12 \times 2} = 2.213$ $x_2 = 2.270$ $x_3 = 2.284$ $x_4 = 2.288$ $x_5 = 2.289$ $x_6 = 2.289$ The solution is 2.289, accurate to 3 dp	x_1 At least six iterations Correct answer with reason	1 1 1
10.6 (a)	The roots are where the curve crosses the <i>x</i> -axis, so they can be found where $y = 0$	Correct explanation	1

Question	Answer	Extra information	Marks
10.6 (b)	$x^{3} + 5x^{2} - 1 = 0$ $x^{3} = 1 - 5x^{2}$ $x = \frac{1 - 5x^{2}}{x^{2}}$	Making x^3 the subject Correct answer	1 1
	$x_0 = -4$ $x_1 = -4.937$ $x_2 = -4.958$ $x_3 = -4.959$ The solution is -4.96, to 2 dp	x_1 At least two further iterations Correct answer	1 1 1
10.6 (d)	$x^{3} + 5x^{2} - 1 = 0$ $5x^{2} = 1 - x^{3}$ $x = \sqrt{\frac{1 - x^{3}}{5}}$	Making x^2 the subject Correct answer	1 1
10.6 (e)	$x_0 = 0$ $x_1 = 0.447$ $x_2 = 0.426$ $x_3 = 0.429$ $x_4 = 0.429$ The solution is 0.43, accurate to 2 dp	x_1 At least three further iterations Correct answer	1 1 1

Question	Answer	Extra information	Marks
10.6 (f)	$x_0 = -1$		
	$x_1 = -0.4$		
	$x_2 = -0.532$		
	$x_2 = -0.532$ $x_3 = -0.432$	x_1	1
	$x_4 = -0.499$	At least five further iterations	1
	$x_5 = -0.450$	Correct answer	1
	$x_6 = -0.484$		
	$x_7 = -0.459$		
	The solution is -0.5 , accurate to 1 dp		
10.7 (a)	$x^2 + 6x + 10 = (x+3)^2 + 1$	<i>a</i> = 3	1
	a = 3, b = 1	<i>b</i> = 1	1
10.7 (b)	(-3, 1)		1

Question	Answer	Extra information	Marks
10.7 (c)	y_{10} (0, 10) (0,	Shape correct with either <i>y</i> -intercept or turning point labelled. Shape correct with both <i>y</i> -intercept and turning point labelled.	1 1
10.8	$(x-1)(2-x)(x+4) = (3x-2-x^2)(x+4) = -x^3 - x^2 + 10x - 8$	Correct expansion of any two sets of brackets Attempt to multiply by the remaining set of brackets All terms correct, but unsimplified Fully correct and simplified	1 1 1 1
10.9	$x^{2} - 25 = 6$ $x^{2} - 6x - 25 = 0$ $(x - 3)^{2} - 9 - 25 = 0$ $x = 3 \pm \sqrt{34}$	Attempt to create $(x-3)^2$ (+) 3 or $\sqrt{34}$ seen Fully correct answer	1 1 1