

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 37 Dynamics

Question	Answer	Extra information	Marks
	$v^2 = u^2 + 2as$	Attempting to use $v^2 = u^2 + 2as$ to find acceleration	M1
	$0 = 15^2 + 2a(75)$	Correct equation	A1
	(a = -1.5)		
37.1	$-F = 0.2 \times (-1.5)$	Applying $F = ma$ in direction of motion	M1
	R = 0.2g	Resolving vertically	M1A1
	$\mu = \frac{0.3}{0.2 \times 9.8} = 0.153$	Use of $F = \mu R$ to obtain correct answer	A1

Question	Answer	Extra information	Marks
	Total		6 marks
		Parts (a) and (b) marked together	
37.2 (a) and (b)	$ \begin{array}{c} 10^{\circ} \\ T \\ 200 \\ 500 \\ F = ma \text{ in the direction of motion} \\ \text{Car:} \\ 2000 - T \cos 10^{\circ} - 500 = 1000a \\ \text{Trailer:} \\ T \cos 10^{\circ} - 200 = 600a \\ \end{array} $ (1)	Equation for car Equation for trailer	M1A1 M1A1
	$a = 0.81 \text{ (m s}^{-2})$	Correct a	A1
	T = 698 (N)	Correct T	A1
	Total		6 marks

Question	Answer	Extra information	Marks
37.3	R F 30° $3g \cos 30^{\circ}$ $3g \sin 30^{\circ}$		
	$15 = \frac{1}{2}a(100)$ $a = 0.3 \text{ (m s}^{-2})$ $R = 3g \cos 30 = 25.46 \text{ (N)}$ $3g \sin 30 - F = 3a$ (F = 13.8) $\mu = \frac{13.8}{25.46}$ = 0.54 (to 2 s.f)	Use of $s = ut + \frac{1}{2}at^2$ to find <i>a</i> Correct <i>a</i> Resolving perpendicular to the plane Applying $F_{res} = ma$ parallel to the plane Use of $F = \mu R$ to obtain correct answer	M1 A1 M1A1 M1A1 A1
	Total		7 marks

Question	Answer	Extra information	Marks
37.4	$\binom{3}{2} + \binom{-5}{b} + \binom{a}{-4} = 2\binom{2}{-3}$	Applying $F_{res} = ma$	M1A1
	i components $3-5+a=4$ j components $2+b-4=-6$	Splitting into two equations	M1
	a = 6, b = -4	Both correct	A1
	Total		4 marks
	3g - T = 3a	Applying $F_{\text{res}} = ma$ for vertical direction	M1A1
37.5(a)	T - 1.8g = 1.8a	Applying $F_{\text{res}} = ma$ for horizontal direction	M1A1
57.5 (a)	$a = \left(\frac{g}{4}\right) = 2.45 \text{ (m s}^{-2})$	Correct answer only	A1
37.5 (b)	The acceleration of each particle is the same	Valid explanation	B1

Question	Answer	Extra information	Marks
	$v^2 = 2\left(\frac{g}{4}\right) \times 0.5$	Use of $v^2 = u^2 + 2as$ to find the velocity of each particle when the string breaks	M1A1
	$v^2 = \left(\frac{g}{4}\right)$		
	(v = 1.5652)		
37.5 (c)	$1.5652 = \left(\frac{g}{4}\right)t$	Finding time for this part of the motion using $v = u + at$	M1
	(t = 0.6388)		
	$1.5 = 1.5652 t + 4.9t^2$ $4.9t^2 + 1.5652t - 1.5 = 0$	Use of $s = ut + \frac{1}{2}at^2$	M1A1
	t = 0.4161 (s)		
	Total time to reach floor = $0.4161 + 0.6388$		
	= 1.05 (s)	Correct total time	A1
	Total		12 marks

Question	Answer	Extra information	Marks
37.6 (a)	$T \cos 45^{\circ} - F - 3g \sin 40^{\circ} = 3(1.2) \qquad (1)$ $R + T \sin 45^{\circ} = 3g \cos 40^{\circ} \qquad (2)$ $F = 0.35(3g \cos 40^{\circ} - T \sin 45^{\circ}) \qquad (3)$ $T \cos 45^{\circ} - 0.35(3g \cos 40^{\circ} - T \sin 45^{\circ}) - 3g \sin 40^{\circ} = 3.6$ T = 31.8 (N)	Applying $F_{res} = ma$ parallel to the slope Resolving perpendicular to the plane Use of $F = \mu R$ and equation (2) Substituting (3) into (1) and solving for <i>T</i> Correct <i>T</i>	M1A1 M1A1 M1 M1 A1
37.6 (b)	When the rope breaks, $T = 0$ $R = 3g \cos 40^{\circ}$ $F = 0.35(3g \cos 40^{\circ})$ = 7.8825 $3g \sin 40^{\circ} - 7.8825 = 3a$ $a = 3.67 \text{ (m s}^{-2})$	Resolving perpendicular to the plane Use of $F = \mu R$ Applying $F_{res} = ma$ parallel to the slope Correct <i>a</i>	M1 M1 M1 A1
	Total		11 marks

Question	Answer	Extra information	Marks
277(a)	$T - g - 1.5g - 0.8g = 3.3 \times 0.6$	Applying $F_{\text{res}} = ma$ upwards on whole system	M1A1
37.7 (a)	T = 34.3 (N)	Correct answer	A1
37.7 (b)	34.32 N A R_1 R_2 R_2 R_2 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_2 R_1 R_2	Applying $F_{\rm res} = ma$ upwards to A	M1A1
	The force exerted by brick <i>B</i> on brick <i>A</i> is 10.4 N	Correct answer only	A1
	$34.32 - 0.8g - R_2 = 0.8 \times 0.6$	Applying $F_{\rm res} = ma$ upwards to the bucket	M1A1
37.7 (c)	$R_2 = 26$		
	The force exerted by brick B on the bucket is 26 (N)	Correct answer	A1
	Total		9 marks

Question	Answer	Extra information	Marks
37.8 (a)	R T F T F T		
	$R = 5g\cos\theta = 4g$	Resolving perpendicular to the plane down the plane	M1A1
	$F = 4\mu g$	Use of $F = \mu R$	B1
	$5g\sin\theta - T - F = 5a$	Use of $F_{\rm res} = ma$ parallel to the plane	M1A1
	$3g - T - 4\mu g = 5a \tag{1}$		
	Particle B		
	$T-2g\sin\alpha=2a$	Use of $F_{res} = ma$ parallel to the plane up the plane	M1A1
	$T - \frac{8g}{5} = 2a \tag{2}$		
	$\frac{7g}{5} - 4\mu g = 7a$	Use of equations (1) and (2) to eliminate T	M1

ISBN 9781382057707

Question	Answer	Extra information	Marks
	$7g - 20\mu g = 35a$ $(7 - 20\mu)g$		
	$a = \frac{(1 - 26\mu)s}{35}$	Correct answer	A1
	As <i>A</i> accelerates down the plane, acceleration from (a) must be positive.		
37.8 (b)	$\frac{\left(7-20\mu\right)g}{35} > 0$	Correct inequality, setting $a > 0$	M1
	$\mu < \frac{7}{20}$	Correct range	A1
	Total		11 marks
	18 = 3 + 30a	Use of $v = u + at$ from A to B to find acceleration	M1A1
	15 = 30a		
	(a = 0.5)		
	$s = 3(30) + \frac{1}{2}(0.5)(30)^2$	Use of $s = ut + \frac{1}{2}at^2$ from A to B to find distance AB	M1A1
37.9	(s = 315)		
	Distance from A to C is $157.5 (m)$		
	$157.5 = 3t + \frac{1}{2}(0.5)t^2$	Use of $s = ut + \frac{1}{2}at^2$ from <i>A</i> to <i>C</i> to find time	M1A1
	t = 19.8 (s)	Correct answer only. Must exclude negative <i>t</i> value for mark.	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	$R = 4g \cos \theta$	Resolving perpendicular to the plane	M1A1
	$\cos\theta = \frac{12}{13}$		
	$R = \frac{48}{13}g$		
	$F = 4g \sin \theta$	Resolving parallel to the plane	M1A1
	$\sin\theta = \frac{5}{13}$		
37.10 (a)	$F = \frac{20}{13}g$		
	$\mu = \frac{F}{R} = \frac{20g}{13} \div \frac{48g}{13}$	Use of $F = \mu R$ as in limiting equilibrium	M1
	$=\frac{20}{48}$		
	$=\frac{5}{12}$		
	= 0.417	Correct answer	A1

Question	Answer	Extra information	Marks
	Let horizontal force be <i>P</i>		
	$R = 4g\cos\alpha + P\sin\alpha$	Resolving perpendicular to the plane	M1A1
	$R = \frac{20}{13}g + \frac{12}{13}P$		
	$P\cos\alpha + F = 4g\sin\alpha$	Resolving parallel to the plane	M1A1
37.10 (b)	$F = \frac{48}{13}g - \frac{5}{13}P$		
	$\frac{48}{13}g - \frac{5}{13}P = \frac{5}{12}\left(\frac{20}{13}g + \frac{12}{13}P\right)$	Use of $F = \mu R$ to form equation in <i>P</i> only	M1
	$P\left(\frac{5}{13} + \frac{5}{13}\right) = \frac{48}{13}g - \frac{25}{39}g$		
	P = 38.9 (N)	Correct answer only	A1
	Total		12 marks