

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 36 Forces and equilibrium

Question	Answer	Extra information	Marks
	Resolving horizontally:	Attempting to resolve in either direction	M1
	$15 - 8\cos 30^\circ - 12\sin 45^\circ (= -0.41348)$	Correct horizontal resolution	A1
	Resolving vertically:		
36.1 (a)	$8 \sin 30^\circ - 12 \cos 45^\circ (= -4.48528)$	Correct vertical resolution	A1
	Using Pythagoras' theorem:	Use of Pythagoras' theorem	M1
	$\sqrt{0.41348^2 + 4.48528^2} = 4.50$ (N)	Correct answer only	A1
36.1 (b)	$\tan^{-1}(4.48528 \div 0.41348) = 84.7^{\circ}$	Use of tan to find an angle	M1
	Angle with positive horizontal = $180^{\circ} - 84.7^{\circ} = 95.3^{\circ}$	Correct answer only	A1

ISBN 9781382057707

Question	Answer	Extra information	Marks
	Total		7 marks
	-3 + q + 5p = 0	Equation with i components	M1
	4p - 8 - 2q = 0	Equation with j components	M1
36.2	Solving simultaneously:		
	p = 1	Correct <i>p</i> value	A1
	q = -2	Correct q value	A1
	Total		4 marks
36.3 (a)	Resolving perpendicular to the plane: $R = 2g \cos \theta$	Attempting to resolve	M1A1
	$R = 2g \times \frac{3}{5}$		
	R = 11.8 (N)	Correct answer	A1

Question	Answer	Extra information	Marks
36.3 (b)	Resolving parallel to the plane: $X = 2g \sin \theta + F$ $X = 2g \times \frac{4}{5} + 10$	Attempting to resolve	M1A1
	X = 25.7 (N)	Correct answer	A1
	Total		6 marks

Question	Answer	Extra information	Marks
36.4	$F = \frac{19.021}{42.819}$ Resolving horizontally: 20 cos 18° = F F = 19.021 Resolving vertically: R + 20 sin 18° = 5g R = 42.819 Using F = μR : $\mu = \frac{F}{R}$ = $\frac{19.021}{42.819}$ = 0.44	Attempting to resolve horizontally Correct equation Attempting to resolve vertically Correct equation Use of $F = \mu R$. Must substitute both F and R Correct answer only	M1 A1 M1 A1 M1
	Total		6 marks
36.5 (a)		Valid explanation	B1

Question	Answer	Extra information	Marks
36.5 (b)	T_1 T_2 40° 45° $0.5g$		
	$T_1\cos 40^\circ = T_2\cos 45^\circ$	Resolving horizontally	M1A1
	$T_1 \sin 40^\circ + T_2 \sin 45^\circ = 0.5g$	Resolving vertically	M1A1
	Solving simultaneously:		
	$T_1 = 3.48 (N)$	T_1 correct	A1
	$T_2 = 3.77 (N)$	T_2 correct	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	XN F Ø 5g		
	$X\cos\theta = F + 5g\sin\theta \tag{1}$	Resolving horizontally	M1A1
	$R = X\sin\theta + 5g\cos\theta \tag{2}$	Resolving vertically	M1A1
	$F = 0.25R \tag{3}$	Using $F = \mu R$	M1
	Substituting equation (2) and (3) in (1):		
36.6 (a)	$X\cos\theta = 0.25(X\sin\theta + 5g\cos\theta) + 5g\sin\theta$		
	$\cos \theta = \frac{12}{13} \qquad \sin \theta = \frac{5}{13}$		
	$\frac{12}{13}X = \frac{1}{4}\left(\frac{5}{13}X + 5g\frac{12}{13}\right) + \frac{25g}{13}$	Eliminating <i>F</i> , <i>R</i> and θ to obtain an equation in <i>X</i> only	M1
	$\frac{12}{13}X - \frac{5}{52}X = \frac{60}{52}g + \frac{25g}{13}$		
	$\frac{43}{52}X = \frac{40}{13}g$		
	$X = \frac{160}{43}g$	Correct simplification	A1

Question	Answer	Extra information	Marks
36.6 (b)	On the point of slipping down the plane means that <i>F</i> would be going up the plane.	Correct statement about F	B1
	The magnitude of X would be smaller.	Correct conclusion about magnitude	B1
	Total		9 marks
36.7 (a)	$\tan\theta = \frac{3}{1}$	Use of trigonometry to find expression for tan θ	M1
	$\theta = 71.6^{\circ}$	Correct answer only	A1
	Let the resultant vector be $k \begin{pmatrix} 1 \\ 1 \end{pmatrix}$		
	2 + p = k	Equation using i components	M1
	-5 + 3p = k	Equation using j components	M1
	2 + p = k - 5 + 3p = k p = 3.5	Solving simultaneously. Correct answer only.	A1
	Total		5 marks

Question	Answer	Extra information	Marks
	One continuous string with smooth bead so tension in each part of the string is the same		
	Angle <i>APB</i> is a right angle as Pythagoras' theorem holds		
	(triangle <i>ABP</i> is a 3:4:5 triangle)		
	2.5		
36.8 (a)	$A = \varphi B$ 1.5 T T T P = 0.2g		
	$\cos \theta = \frac{1.5}{2.5} = \frac{3}{5}$ $\sin \theta = \frac{4}{5}$	For values cos and sin of each angle	B1
	$\cos \varphi = \frac{2}{2.5} = \frac{4}{5}$ $\sin \varphi = = \frac{3}{5}$		
	Resolving vertically:	Attempting to resolve	M1
	$T\sin\theta + T\sin\varphi = 0.2g$	Correct equation	A1
	$\frac{4}{5}T + \frac{3}{5}T = 0.2g$		
	$T = \frac{1}{7} g$	Correct T	A1

ISBN 9781382057707

Question	Answer	Extra information	Marks
	Resolving horizontally:	Attempting to resolve	M1
	$-X + T\cos\varphi = T\cos\theta$	Correct equation	A1
36.8 (b)	$X = \frac{1}{7}g\left(\frac{4}{5}\right) - \frac{1}{7}g\left(\frac{3}{5}\right)$		
	$X = \frac{g}{35}$		
	The magnitude of X is $\frac{g}{35}$ (N)	Correct X	A1
	Total		7 marks
	$s = ut + \frac{1}{2}at^2$	Attempting to use $s = ut + \frac{1}{2}at^2$	M1
	$s = 4 \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \frac{1}{2} \times 16 \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 20 \\ 24 \end{pmatrix}$	Correct equation	A1
	Position is $\begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 20 \\ 24 \end{pmatrix} = \begin{pmatrix} 22 \\ 23 \end{pmatrix}$	Adding original position	M1
	$22\mathbf{i} + 23\mathbf{j}$	Correct answer only. Accept vector form or ij form.	A1
	Total		4 marks

Question	Answer	Extra information	Marks
	$0 = U\sin\theta - gt$	At maximum height, using $v = u + at$ vertically	M1A1
	$t = \frac{U\sin\theta}{1} \tag{1}$		
	g Using $v^2 = u^2 + 2as$ vertically:		
	$0 = U^2 \sin^2\theta - 2g(40)$	Using $v^2 = u^2 + 2as$ vertically	M1A1
	$80g = U^2 \sin^2 \theta \tag{2}$		
	$80\sqrt{3} = Ut \cos\theta \tag{3}$	At maximum height, using $s = ut + \frac{1}{2}at^2$ horizontally	M1A1
36.10	$80\sqrt{3} = Ut \cos\theta \qquad (3)$ $80\sqrt{3} = \frac{U\cos\theta \times U\sin\theta}{g} = \frac{U^2\sin\theta\cos\theta}{g}$	Substituting equation (1) into equation (3) to eliminate t	M1
	$80\sqrt{3} = \frac{80}{\sin^2\theta} \times \cos\theta \sin\theta$	Eliminating U and g	M1
	$\sqrt{3} = \frac{\cos\theta}{\sin\theta} = \cot\theta$	Correct equation for cot or tan	A1
	$\theta = 30^{\circ}$		
	Using equation (2):		
	$U^2 = \frac{80g}{\sin^2 30^\circ}$	Finding U^2	M1
	$U = 56 \text{ (m s}^{-1})$	Correct answer	A1
	Total		11 marks