

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it. ٠
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded. ٠
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'. ٠

Please note that:

- efficient use of advanced calculators is expected ٠
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be ٠ quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question. ٠

Chapter 35 Projectiles

Question	Answer	Extra information	Marks
35.1 (a)	$s = ut + \frac{1}{2}at^2$	Use of $s = ut + \frac{1}{2}at^2$ vertically	M1
	$-15 = -4.9t^2$ t = 1.75 (s)	Correct answer	A1
35.1 (b)	$s = ut + \frac{1}{2}at^2$	Use of $s = ut + \frac{1}{2}at^2$ horizontally	M1
	$s = 18 \times 1.75$		
	s = 31.5 (m)	Correct answer	A1
	Total		4 marks
Oxford Revise ©	Oxford University Press 2024	ISBN 9781382057707	1

Question	Answer	Extra information	Marks
	$v^2 = u^2 + 2as$	Complete method for height, e.g. use of $v^2 = u^2 + 2as$ vertically	M1
	$0 = (20\sin 60^\circ)^2 - 19.6s$	Correct equation	A1
35.2 (a)	$s = \frac{300}{1000}$		
	19.6		
	= 15.3 (m)	Correct answer only	A1
	$s = ut + \frac{1}{2}at^2$	Correct method e.g. use of $s = ut + \frac{1}{2}at^2$ vertically	M1
25.2 (h)	$0 = \left(10\sqrt{3}\right)t - 4.9t^2$	Correct equation	A1
35.2 (b)	$0 = t \left(10\sqrt{3} - 4.9t \right)$		
	$(t = 0 \text{ or}) \ t = \frac{10\sqrt{3}}{4.9} = 3.53 \ (s)$	Correct answer only	A1
35.2 (c)	Air resistance will reduce the maximum height reached.	Any valid statement	B1
	Total		7 marks
	$s = ut + \frac{1}{2}at^2$	Use of $s = ut + \frac{1}{2}at^2$ vertically to form quadratic in t	M1
25.2	$60 = (50\sin 45^\circ)t - 4.9t^2$		
35.3	$4.9t^2 - 25\sqrt{2} t + 60 = 0$		
	t = 4.4854, 2.7298	Two values of <i>t</i>	A1
	Time above $60 \text{ m} = 4.4854 - 2.7298 = 1.76 \text{ s}$	Correct answer only	A1
	Total		3 marks

Question	Answer	Extra information	Marks
	$s = ut + \frac{1}{2}at^{2}$ $x = (21 \cos \alpha) t$ $t = \frac{x}{21 \cos \alpha}$	Use of $s = ut + \frac{1}{2}at^2$ horizontally	M1A1
35.4 (a)	$s = ut + \frac{1}{2}at^{2}$ $y = (21 \sin \alpha)t - \frac{g}{2}t^{2}$ $y = (\alpha x - \beta) - \frac{g}{2}(\alpha x - \beta)^{2}$	Use of $s = ut + \frac{1}{2}at^2$ vertically	M1A1
	$y = 21\sin\alpha \left(\frac{\pi}{21\cos\alpha}\right) - \frac{\pi}{2} \left(\frac{\pi}{21\cos\alpha}\right)$ $y = x\tan\alpha - \frac{x^2}{90\cos^2\alpha}$	Eliminating <i>t</i> Reaching correct equation	M1 A1
35.4 (b)	$x = 20, y = \frac{40}{9}$ $\frac{40}{9} = 20 \tan \alpha - \frac{400}{90} (1 + \tan^2 \alpha)$ $\frac{40}{9} = 20 \tan \alpha - \frac{40}{9} - \frac{40}{9} \tan^2 \alpha$	Substituting $x = 20$, $y = \frac{40}{9}$ into equation from (a)	M1
	$2\tan^2\alpha - 9\tan\alpha + 4 = 0$	Forming a quadratic in $\tan \alpha$	M1
	$\tan \alpha = 4 \text{ or } \tan \alpha = \frac{1}{2}$	Both solutions correct	A1
Oxford Revise ©	Oxford University Press 2024	ISBN 9781382057707	-

Question	Answer	Extra information	Marks
35.4 (c)	There are two parabolic paths that will pass through the point $\left(20, \frac{40}{9}\right)$. Each requires a different angle of projection.	Graph and valid reasoning	B1
	Total		10 marks
35.5 (a)	$v^2 = u^2 + 2as$	Attempting to use $v^2 = u^2 + 2as$ in vertical direction	M1
	$0 = U^{2} \sin^{2} \alpha + 2(-9.8)(4)$ $U^{2} = 122.5$	Correct equation; $\sin \alpha = \frac{4}{5}$ does not need to be substituted	A1
	$U = 11.1 \text{ (m s}^{-1})$	Correct U	A1

Question	Answer	Extra information	Marks
35.5 (b)	At ship's mast vertical displacement = -4 $v^2 = (11.068\sin \alpha)^2 + 2(-9.8)(-4)$ $v^2 = 156.8$	Correct use of $v^2 = u^2 + 2as$ vertically	M1A1
	v = 12.5218 (m s ⁻¹) The horizontal component of velocity remains constant at 11.068 cos $\alpha = 6.6407$	Correct vertical component Correct horizontal component	A1 B1
	Speed = $\sqrt{6.6407^2 + 12.5219^2}$	Correct use of Pythagoras' theorem with both components	M1
	$= 14.2 \text{ (m s}^{-1})$	Correct answer only	A1
35.5 (c)	For example: The sea is not flat or horizontal The cliff is unlikely to be vertical There could be waves	Any valid limitation	B1
	Total		10 marks
35.6 (a)	2p = t	Use of $s = ut + \frac{1}{2}at^2$ horizontally	M1
	$-p = 2(2p) - 4.9 \ (2p)^2$	Use of $s = ut + \frac{1}{2}at^2$ vertically	M1
	$-p = 4p - 19.6p^2$ 19.6p ² -5p = 0	Correct quadratic in <i>p</i>	A1
	$p = \frac{5}{19.6} = \frac{25}{98}$		
	p = 0.255 (or -0.255)	Correct <i>p</i>	A1

ISBN 9781382057707

Question	Answer	Extra information	Marks
	$v = 2 - 9.8 \times 2 \times \frac{25}{98}$	Use of $v = u + at$ vertically	M1
35.6 (b)	v = -3	Correct v	A1
	Velocity at A is $\mathbf{i} - 3\mathbf{j}$	Must write as column vector or in ij notation	A1
	Total		7 marks
	Using $s = ut + \frac{1}{2}at^2$ horizontally		
	x = wt	Forming equation for <i>t</i> in terms of <i>w</i> and <i>x</i>	M1A1
	$t = \frac{x}{w}$		
	$s = 3wt - \frac{gt^2}{2}$	Use of $s = ut + \frac{1}{2}at^2$ vertically	M1A1
35.7 (a)	y = 4 - s		
	$y = 4 - \left(-3wt + \frac{gt^2}{2}\right)$		
	$y = 4 + 3w\left(\frac{x}{w}\right) - \frac{gx^2}{2w^2}$	Reaching equation in <i>w</i> and <i>x</i> only	A1
	$y = 3x - \frac{gx^2}{2w^2} + 4$	Correct simplification	A1

Question	Answer	Extra information	Marks
	Vertical displacement is zero when $y = 4$		
	$4 = 3x - \frac{gx^2}{2w^2} + 4$	Attempting to find equation in x and k	M1A1
	$3x = \frac{gx^2}{2w^2}$		
35.7 (b)	$6xw^2 = gx^2$		
	$x = \frac{6w^2}{g}$	Correct <i>x</i> -coordinate	A1
	Position vector is		
	$\frac{6w^2}{g}\mathbf{i} + 4\mathbf{j}$	Correct answer only	A1
	At <i>B</i> : $s = ut + \frac{1}{2}at^2$ vertically	Use of $s = ut + \frac{1}{2}at^2$ vertically	M1
	-4 = (3w)5 - 4.9(25)	Correct equation	A1
35.7 (c)	-4 = 15w - 122.5		
	118.5 = 15w	Correctory	Δ1
	$W \equiv 7.9$	Correct w	Π
	$s = ut + \frac{1}{2}at^2$ horizontally	Use of $s = ut + \frac{1}{2}at^2$ horizontally	M1
	p = 5w $p = 39.5$	Correct <i>p</i>	A1

ISBN 9781382057707

Question	Answer	Extra information	Marks
	Total		15 marks
	$\frac{2t^4 - 18}{5t^2} = \frac{1}{-1}$ $-2t^4 + 18 = 5t^2$	Forming an equation with the ratio of the components	M1A1
55.8 (a)	$2t^{2} + 5t^{2} - 18 = 0$ $t^{2} = \frac{-9}{2}$ or 2 t = 1.41 (s)	Correct <i>t</i>	A1
	$\mathbf{r} = \int \mathbf{v} dt = \left(\frac{2}{5}t^5 - 18t + c\right)\mathbf{i} + \left(\frac{5}{3}t^3 + d\right)\mathbf{j}$ $t = 0, \ \frac{19}{5}\mathbf{i} = c\mathbf{i} + d\mathbf{j}$	Attempting to integrate <i>v</i> . Condone omission of <i>c</i> and <i>d</i> for mark.	M1A1
35.8 (b)	$c = \frac{19}{5}, d = 0$ $\mathbf{r} = \left(\frac{2}{5}t^5 - 18t + \frac{19}{5}\right)\mathbf{i} + \left(\frac{5}{3}t^3\right)\mathbf{j}$	Finding constants of integration	M1
	When $t = 3$ $\mathbf{r} = 47\mathbf{i} + 45\mathbf{j}$	Correct answer	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	$v^2 = u^2 + 2as$	Use of $v^2 = u^2 + 2as$	M1
35.9(a)	$v^2 = 18^2 + 2(-9.8)(-6)$	Correct equation	A1
55.7 (a)	$v^2 = 441.6$		
	$v = 21.0 \text{ (m s}^{-1}\text{)}$	Correct v	A1
	v = u + at		
	0 = 18 - 9.8t		
	t = 1.84 (s)	Attempting to find time to the top	M1
	$s = ut + \frac{1}{2}at^2$		
	$-6 = 18t - 4.9t^2$	Attempting to find time to ground	M1
	t = 3.98 (s)		
35.9 (b)	18	Straight line with negative slope	B1
	E 1.84 3.98	For end point at (3.98,-21)	B1
	Ae	For their 1.84 at intersection with <i>x</i> -axis	B1
	-21 N		
	Time (s)		
	Total		8 marks