

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 31 Discrete probability distributions

Question	Answer	Extra information	Marks
31.1 (a)	0.2 + 0.1 + k + k + 0.1 + 0.3 = 1	Using the fact that probabilities sum to 1	M1
	k = 0.15	Correct answer	A1
31.1 (b)	P(10 < X < 40) = 0.1 + `0.15'	P(20) + P(30)	M1
	= 0.25	Correct answer	A1
31.1 (c)	$0.2^{2} + 0.1^{2} + k^{2} + (k + 0.1)^{2} + 0.3^{2}$ = 0.225	Or using their value of k	M1
	= 0.225	Correct answer	A1
	Total		6 marks

Question	Answer	Extra information	Marks
31.2 (a)	k + 3k + 5k + k + 3k + 5k = 1	Using the fact that probabilities sum to 1	M1
	18k = 1		
	$k = \frac{1}{18}$	Correct method for given conclusion	A1
	P(W > 4) = P(W = 5) + P(W = 6)		
31.2 (b)	$=\frac{5}{18}+\frac{5}{18}$	Adding two probabilities. At least one probability correct.	M1
	$=\frac{5}{9}$	Correct answer	A1
	Total		4 marks
31.3 (a)	P(X = 12) = 0.0595	Correct answer	B1
	$P(X \ge 8) = 1 - P(X \le 7)$	Method can be implied by value of 0.3672 or by a correct final	M1
31.3 (b)	= 1 - 0.3672	answer	
	= 0.633	Correct answer	A1
31.3 (c)	$P(10 < X < 15) = P(X \le 14) - P(X \le 10)$	Method can be implied by values of 0.9836 and 0.7797, or by a	M1
	= 0.9836 - 0.7797	correct final answer	
	= 0.204	Correct answer	A1
	Total		5 marks

Question	Answer	Extra information	Marks
31.4	$\frac{1}{5} \times \frac{1}{2} \text{ or } \frac{4}{5} \times \frac{1}{4}$	Multiplying to find either combined probability	B1
	P(B = 1 and Y = 2) + P(B = 2 and Y = 1)	Method can be implied by a sum of any two products or by sum	M1
	$= \frac{1}{5} \times \frac{1}{2} + \frac{4}{5} \times \frac{1}{4}$	of fractions $\frac{1}{10}$ or $\frac{1}{5}$	
	$=\frac{3}{10}$	Correct answer	A1
	Total		3 marks
	The lifetimes of each phone are independent of each other.	One reason	B1
31.5 (a)	The probability that a phone has a battery life of more than 30 hours is constant for each phone.	Both reasons	B1
31.5 (b)	$X \sim B(20, 0.23)$	Writing or using a binomial with $p = 0.23$	M1
	P(X = 7) = 0.0883	Also allow 0.0882	A1
31.5 (c)	$P(X > 7) = 1 - P(X \le 7)$ = 1 - 0.9325	Method can be implied by value of 0.9325 or by a correct final answer	M1
	= 0.0675	Also allow 0.0674	A1
	Total		6 marks
	$P(13 \le X < 20) = P(X \le 19) - P(X \le 12)$	Method can be implied by values of 0.9937 and 0.5772, or by a	M1
31.6 (a)	= 0.9937 - 0.5772	correct final answer	
	= 0.417	Also allow 0.416	A1
			N/1
31.6 (b)	$P(X \le a) > 0.4$	Method can be implied by a correct answer	M1

Question	Answer	Extra information	Marks
	Total		4 marks
31.7 (a)	Discrete uniform	Also allow just 'uniform'	B1
31.7 (b)(i)	$X \sim B(26, \frac{1}{3})$	Writing or using a binomial with $p = \frac{1}{3}$	B1
	$P(X < 8) = P(X \le 7)$	Method can be implied by a correct answer	M1
	= 0.321	Correct answer	A1
31.7 (b)(ii)	$P(6 < X \le 12) = P(X \le 12) - P(X \le 6)$ = 0.9417 - 0.1850	Method can be implied by values of 0.9417 and 0.1850, or by a correct answer	M1
	= 0.757	Correct answer	A1
	Total		6 marks
31.8 (a)(i)	$X \sim B(20, \frac{5}{6})$	Writing or using a binomial with $p = \frac{5}{6}$ in either part of the question	M1
	P(X = 15) = 0.129	Correct answer	A1
31.8 (a)(ii)	$P(X > 13) = 1 - P(X \le 13)$ = 1 - 0.0371	Method can be implied by a value of 0.0259 or by a correct answer	M1
	= 0.963	Correct answer	A1
	$P(X \le a - 1) > 0.5$	Method can be implied by a value of 7 or 8	M1
31.8 (b)	a - 1 = 7		
	<i>a</i> = 8	Correct answer	A1
	Total		6 marks

Question	Answer	Extra information	Marks
31.9 (a)(i)	$\mathbf{P}(A \cap B') = 0.33$	Correct answer	B1
31.9 (a)(ii)	$P(A \cup B) = 0.33 + 0.22 + 0.15 + 0.03$	Allow alternative method $1 - 0.27$	M1
	= 0.73	Correct answer	A1
31.9 (a)(iii)	$P(C \mid B) = \frac{0.03}{0.03 + 0.15 + 0.22}$	Use of conditional probability with correct denominator	M1
(u)(III)	= 0.075	Correct answer	A1
31.9 (b)	A and C since $P(A \cap C) = 0$	Correct answer and reason	B1
	$P(A) \times P(B) = 0.55 \times 0.4 (= 0.22)$	Calculating $P(A) \times P(B)$	M1
31.9 (c)	$\mathbf{P}(A \cap B) = 0.22$	Correct value for $P(A) \times P(B)$ and $P(A \cap B)$	M1
	$P(A) \times P(B) = P(A \cap B)$ so they are independent	Conclusion	A1
	Total		9 marks
31.10 (a)	$Q_1 = 2.5 + \frac{4.5}{20} \times 0.5$ or $Q_3 = 2.5 + \frac{19.5}{20} \times 0.5$	Method correct for Q_1 or Q_3	M1
	$Q_1 = 2.61$ or $Q_3 = 2.99$	Q_1 or Q_3 correct	A1
	IQR = 2.99 - 2.61	Subtracting with at least one correct value	M1
	= 0.375 (kg)	Also allow answers that round to 0.38	A1
	$Q_1 - 1.5(Q_3 - Q_1) = 2.61' - 1.5(0.375')$	Substituting into given rule	M1
31.10 (b)	= 2.05 2 < 2.05 so both honeydew melons in the class $1.5 < m \le 2.0$ are outliers.	Conclusion. Must see 2.05	A1

Question	Answer	Extra information	Marks
31.10 (c)	There is no reason to believe these are errors so should include to ensure that calculations are more accurate.	Valid reason	B1
	Total		7 marks