

## **Oxford Revise | Edexcel A Level Maths | Answers**

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as  $g = 9.8 \text{ m s}^{-2}$  unless stated otherwise in the question.

## **Chapter 22 Integration**

| Question | Answer                                                                                                                                | Extra information                              | Marks   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|
|          | $\int (x^2 - x - 2) dx = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + c$                                                                    | Expanding brackets and attempting to integrate | M1      |
| 22.1     |                                                                                                                                       | At least two terms correct                     | A1      |
|          |                                                                                                                                       | All terms correct, including '+ $c$ '          | A1      |
|          | Total                                                                                                                                 |                                                | 3 marks |
|          | $\begin{pmatrix} 3 & -\frac{1}{2} \end{pmatrix}$ 2 5 1 2                                                                              | Attempting to integrate                        | M1      |
| 22.2     | $\int \left( x^{\frac{3}{2}} - \frac{x^{-\frac{1}{3}}}{3} \right) dx = \frac{2}{5} x^{\frac{5}{2}} - \frac{1}{2} x^{\frac{2}{3}} + c$ | At least one term completely correct           | A1      |
|          |                                                                                                                                       | All terms correct, including '+ $c$ '          | A1      |
|          | Total                                                                                                                                 |                                                | 3 marks |



| Question | Answer                                                                            | Extra information                                  | Marks   |
|----------|-----------------------------------------------------------------------------------|----------------------------------------------------|---------|
| 22.3(a)  | $\int e^{6x} dx = \frac{1}{6} e^{6x} + c$                                         | $ke^{6x}$                                          | M1      |
| 22.3 (a) | $\int c dt = \frac{1}{6} c + c$                                                   | Must include '+ $c$ '                              | A1      |
|          | $\left[\frac{1}{6}e^{6x}\right]_{0}^{k} = \frac{1}{6}\left(e^{6k} - e^{0}\right)$ | Applying limits and subtracting                    | M1      |
|          | $\Rightarrow \frac{1}{6} \left( e^{6k} - 1 \right) = \frac{21}{2}$                |                                                    |         |
| 22.3 (b) | $e^{6k} = 64$                                                                     | Setting up equation in $k$ and attempting to solve | M1      |
|          | $\Rightarrow k = \frac{1}{6} \ln 64$                                              |                                                    |         |
|          | $=\frac{1}{6}\times\ln\left(2^{6}\right)$                                         |                                                    |         |
|          | $= \ln 2$                                                                         | Correct value of <i>k</i>                          | A1      |
|          | Total                                                                             |                                                    | 5 marks |
| 22.4 (a) | $\int k\cos 3x dx = \frac{k}{3}\sin 3x + c$                                       | $k \sin 3x$                                        | M1      |
|          | $\int x \cos 3x dx - \frac{-\sin 3x + c}{3}$                                      | Must include '+ $c$ '                              | A1      |



| Question | Answer                                                                                                                 | Extra information                                                      | Marks          |
|----------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------|
|          | $\left[\frac{k}{3}\sin 3x\right]_{0}^{\frac{\pi}{12}} = \frac{k}{3}\sin\left(\frac{\pi}{4}\right) - \frac{k}{3}\sin 0$ | Applying limits and subtracting                                        | M1             |
| 22.4 (b) | $\Rightarrow \frac{k}{3}\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{3}$                                           | Setting up equation in <i>k</i> and attempting to solve                | M1             |
|          | $k = \frac{\sqrt{2}}{\frac{\sqrt{2}}{2}} = 2$                                                                          | Correct value of k                                                     | A1             |
|          | Total                                                                                                                  |                                                                        | 5 marks        |
| 22.5     | $\int \sec^2 7x dx = \frac{1}{7} \tan 7x + c$                                                                          | $k \tan 7x$<br>Must include '+ c'                                      | M1A1<br>A1     |
|          | Total                                                                                                                  |                                                                        | 3 marks        |
| 22.6     | $\int \sec 4x \tan 4x dx = \frac{1}{4} \sec 4x + c$                                                                    | $k \sec 4x$<br>Must include '+ c'                                      | M1A1<br>A1     |
|          | Total                                                                                                                  |                                                                        | 3 marks        |
| 22.7     | $\int \tan^2 2x dx = \int (\sec^2 2x - 1) dx$ $= \frac{1}{2} \tan 2x - x + c$                                          | Use of trigonometric identity<br>$k \tan 2x - x$<br>Must include '+ c' | M1<br>M1<br>A1 |
|          | Total                                                                                                                  |                                                                        | 3 marks        |



| Question      | Answer                                                                                                                                               | Extra information                               | Marks   |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|
|               | $\int 3\cos^2 x dx = \frac{3}{2} \int (\cos 2x + 1) dx$ $= \frac{3}{4} \sin 2x + \frac{3}{2} x + c$                                                  | Use of trigonometric identity                   | M1      |
| 22.8 (a)      |                                                                                                                                                      | $k \sin 2x + lx$                                | M1      |
|               | $=-\sin 2x + -x + c$ $4$                                                                                                                             | Must include '+ $c$ '                           | A1      |
| 22.8 (b)      | $\left[\frac{3}{4}\sin 2x + \frac{3}{2}x\right]_{0}^{\pi} = \left(\frac{3}{4}\sin 2\pi + \frac{3\pi}{2}\right) - \left(\frac{3}{4}\sin 0 + 0\right)$ | Applying limits to their (a) and subtracting    | M1A1    |
|               | $=\frac{3\pi}{2}$                                                                                                                                    | Correct answer                                  | A1      |
|               | Total                                                                                                                                                |                                                 | 6 marks |
|               | $f(x) = x^3 + x^2 + \frac{1}{2} + c$                                                                                                                 | Attempting to integrate                         | M1      |
|               | $f(x) = x^3 - x^2 - \frac{1}{x} + c$                                                                                                                 | With or without '+ $c$ '                        | A1      |
| 22.9          | $2 = 1^3 - 1^2 - 1 + c \Longrightarrow c = 3$                                                                                                        | Substituting into their $f(x)$ to find <i>c</i> | M1      |
|               | Hence $y = x^3 - x^2 - \frac{1}{x} + 3$                                                                                                              | Correct equation                                | A1      |
|               | Total                                                                                                                                                |                                                 | 4 marks |
| 22.10         | $\int_{4}^{8} \frac{x^2 - 3x + 1}{x} dx = \int_{4}^{8} \left(x - 3 + \frac{1}{x}\right) dx$                                                          | Splitting the fraction                          | M1      |
|               | $= \left[\frac{1}{2}x^{2} - 3x + \ln x\right]_{4}^{8}$                                                                                               | Integrating                                     | M1A1    |
|               | $= (32 - 24 + \ln 8) - (8 - 12 + \ln 4)$                                                                                                             | Substituting                                    | M1      |
|               | $= 12 + \ln 2$                                                                                                                                       | Correct answer                                  | A1      |
| ford Revise © | Oxford University Press 2024                                                                                                                         | ISBN 9781382057707                              | ·       |



| Question  | Answer                                                                                   | Extra information                                 | Marks   |
|-----------|------------------------------------------------------------------------------------------|---------------------------------------------------|---------|
|           | Total                                                                                    |                                                   | 5 marks |
|           | $\int 2\sin 2x dx = -\cos 2x + c$                                                        | Use of $\sin 2x$                                  | M1      |
|           | 3                                                                                        | $k\cos 2x$                                        | A1      |
| 22.11     |                                                                                          | Must include '+ $c$ '                             | A1      |
|           | $2 = -\cos 2\pi + c \implies c = 3$                                                      | Substituting into their integral to find <i>c</i> | M1      |
|           | Hence $y = -\cos 2x + 3$                                                                 | Correct equation                                  | A1      |
|           | Total                                                                                    |                                                   | 5 marks |
|           | $v = t^2 - 5t + c$                                                                       | Integrating                                       | M1      |
| 22.12 (a) |                                                                                          | Must include '+ $c$ '.                            | A1      |
| 22.12 (a) | $7 = 0^2 - 5 \times 0 + c \implies c = 7$                                                | Substituting to find <i>c</i>                     | M1      |
|           | Hence $v = t^2 - 5t + 7$                                                                 | Correct expression                                | A1      |
|           | $8 = t^2 - 5t + 7 \implies t^2 - 5t - 1 = 0$                                             | Use of their (a) to form three term quadratic     | M1      |
| 22.12 (b) | Hence $t = \frac{5 \pm \sqrt{29}}{2}$                                                    |                                                   |         |
| 22.12 (0) |                                                                                          | Negative solution must be rejected                | A1      |
|           | The particle is travelling at 8 m s <sup>-1</sup> when $t = \frac{5 + \sqrt{29}}{2}$ (s) | Allow decimal (5.2 or better)                     | A1      |
|           | Total                                                                                    |                                                   | 7 marks |
| 22.13 (a) | $\int_{2}^{5} x^{3} \mathrm{d}x$                                                         | Correct integral                                  | B1      |



| Question  | Answer                                                                                                                                                                                                                                      | Extra information                      | Marks   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|
|           | $\int_{2}^{5} x^{3} dx = \left[\frac{1}{4}x^{4}\right]_{2}^{5}$ $= \left(\frac{1}{4} \times 5^{4}\right) - \left(\frac{1}{4} \times 2^{4}\right)$                                                                                           | Integrating and attempting to evaluate | M1      |
| 22.13 (b) | $= \left(\frac{1}{4} \times 5^4\right) - \left(\frac{1}{4} \times 2^4\right)$                                                                                                                                                               |                                        |         |
|           | $=\frac{609}{4}$                                                                                                                                                                                                                            | Correct answer                         | A1      |
|           | Total                                                                                                                                                                                                                                       |                                        | 3 marks |
|           | $\lim_{\delta x \to 0} \sum_{x=1}^{8} \sqrt[3]{x}  \delta x = \int_{1}^{8} \sqrt[3]{x}  \mathrm{d}x$                                                                                                                                        | Converting to integral                 | B1      |
| 22.14     | $\lim_{\delta x \to 0} \sum_{x=1}^{8} \sqrt[3]{x}  \delta x = \int_{1}^{8} \sqrt[3]{x}  dx$ $= \left[\frac{3}{4}x^{\frac{4}{3}}\right]_{1}^{8}$                                                                                             | Attempting to integrate and evaluating | M1      |
|           | $= \left(\frac{3}{4} \times 8^{\frac{4}{3}}\right) - \left(\frac{3}{4} \times 1^{\frac{4}{3}}\right)$                                                                                                                                       |                                        |         |
|           | $=\frac{45}{4}$                                                                                                                                                                                                                             | Correct answer                         | A1      |
|           | Total                                                                                                                                                                                                                                       |                                        | 3 marks |
| 22.15 (a) | $\int \left(x^{\frac{1}{2}} - x^{-\frac{1}{2}}\right) \left(x^{\frac{1}{2}} + 2\right) dx = \int \left(x + 2x^{\frac{1}{2}} - 1 - 2x^{-\frac{1}{2}}\right) dx$ $= \frac{1}{2}x^{2} + \frac{4}{3}x^{\frac{3}{2}} - x - 4x^{\frac{1}{2}} + c$ | Converting to index form and expanding | M1A1    |
| 22.10 (u) | $=\frac{1}{2}x^{2} + \frac{4}{3}x^{\frac{3}{2}} - x - 4x^{\frac{1}{2}} + c$                                                                                                                                                                 | Attempting to integrate                | M1A1    |



| Question  | Answer                                                                                       | Extra information                          | Marks   |
|-----------|----------------------------------------------------------------------------------------------|--------------------------------------------|---------|
|           | $\left[\frac{1}{2}x^2 + \frac{4}{3}x^{\frac{3}{2}} - x - 4x^{\frac{1}{2}}\right]_1^9$        | Substituting into their (a)                | M1      |
| 22.15 (b) | $= \left(\frac{81}{2} + 36 - 9 - 12\right) - \left(\frac{1}{2} + \frac{4}{3} - 1 - 4\right)$ |                                            |         |
|           | $=\frac{176}{3}$                                                                             | Correct answer                             | A1      |
|           | Total                                                                                        |                                            | 6 marks |
|           | $(x+2)(x^2-3x-4) = (x+2)(x-4)(x+1)$                                                          | Factorising to find roots                  | M1      |
|           | Roots at $-2$ , 4 and $-1$                                                                   | All roots correct                          | A1      |
|           | Area between $-2$ and $-1 = \int_{-2}^{-1} (x^3 - x^2 - 10x - 8) dx$                         |                                            |         |
|           | $\left[\frac{1}{4}x^4 - \frac{1}{3}x^3 - 5x^2 - 8x\right]_{-2}^{-1} = \frac{11}{12}$         | One correct integral                       | M1      |
|           | -                                                                                            | One correct area                           | A1      |
| 22.16     | Area between $-1$ and $4 = \int_{-1}^{4} (x^3 - x^2 - 10x - 8) dx$                           |                                            |         |
|           | $\left[\frac{1}{4}x^4 - \frac{1}{3}x^3 - 5x^2 - 8x\right]_{-1}^4 = -\frac{875}{12}$          |                                            |         |
|           | Hence area $=$ $\frac{11}{12} + \frac{875}{12}$                                              | Adding two areas, one of which is negative | M1      |
|           | $=\frac{886}{12}=\frac{443}{6}$                                                              | Correct answer                             | A1      |

ISBN 9781382057707



| Question | Answer                                                                                                                 | Extra information                         | Marks   |
|----------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------|
|          | Total                                                                                                                  |                                           | 6 marks |
|          | Area = $\int_0^{\pi} \sin t \times (6t+1) dt = \int_0^{\pi} (6t \sin t + \sin t) dt$                                   | Use of formula for parametric integration | M1A1    |
|          | $= \left[-6t\cos t + 6\sin t - \cos t\right]_0^{\pi}$                                                                  | Attempting to integrate                   | M1A1    |
| 22.17    | = 19.849 + 1                                                                                                           | Evaluating                                | M1      |
|          | = 20.849                                                                                                               |                                           |         |
|          | Hence area = $20.8 \text{ units}^2$                                                                                    | Correct answer                            | A1      |
|          | Total                                                                                                                  |                                           | 6 marks |
|          | $x^{2} - 5x - 4 = 8 - x \Longrightarrow x^{2} - 4x - 12 = 0$                                                           | Attempting to find limits                 | M1      |
|          | Hence $x = 6$ and $-2$                                                                                                 | Correct limits                            | A1      |
|          | $\int_{-2}^{6} (8-x) dx = \left[ 8x - \frac{1}{2}x^2 \right]_{-2}^{6}$                                                 |                                           |         |
|          | = 48                                                                                                                   | One correct integral                      | M1A1    |
| 22.18    | $= 48$ $\int_{-2}^{6} \left( x^2 - 5x - 4 \right) dx = \left[ \frac{1}{3} x^3 - \frac{5}{2} x^2 - 4x \right]_{-2}^{6}$ |                                           |         |
|          | $=-\frac{112}{3}$                                                                                                      |                                           |         |
|          | Area = $48 - \left(-\frac{112}{3}\right)$                                                                              | Subtracting                               | M1      |
|          | $=\frac{256}{3}$                                                                                                       | Correct answer                            | A1      |

ISBN 9781382057707



| Question  | Answer                                                                                                            | Extra information         | Marks   |
|-----------|-------------------------------------------------------------------------------------------------------------------|---------------------------|---------|
|           | Total                                                                                                             |                           | 6 marks |
|           | $x^{2} - 4x + 2 = 2 + 3x - x^{2} \Longrightarrow 2x^{2} - 7x = 0$                                                 | Attempting to find limits | M1      |
|           | Hence $x = 0$ and 3.5                                                                                             | Correct limits            | A1      |
|           | $\int_{0}^{3.5} \left(2 + 3x - x^{2}\right) dx = \left[2x + \frac{3}{2}x^{2} - \frac{1}{3}x^{3}\right]_{0}^{3.5}$ |                           |         |
|           | $=\frac{133}{12}$                                                                                                 | One correct integral      | M1A1    |
| 22.19     | $\int_{0}^{3.5} \left( x^{2} - 4x + 2 \right) dx = \left[ \frac{1}{3} x^{3} - 2x^{2} + 2x \right]_{0}^{3.5}$      |                           |         |
|           | $=-\frac{77}{24}$                                                                                                 |                           |         |
|           | Area = $\frac{133}{12} - \left(-\frac{77}{24}\right)$                                                             | Subtracting               | M1      |
|           | $=\frac{343}{24}$                                                                                                 | Correct answer            | A1      |
|           | Total                                                                                                             |                           | 6 marks |
|           | $AB^2 = 9^2 + 11^2 - 2 \times 9 \times 11 \cos 67^\circ$                                                          | Use of cosine rule        | M1      |
| 22.20 (a) | = 124.635                                                                                                         |                           |         |
| 22.20 (d) | Hence $AB = 11.164$                                                                                               | Taking the square root    | M1      |
|           | = 11.2  cm (3  s.f.)                                                                                              | Correct answer            | A1      |



| Question  | Answer                                                                                                     | Extra information                               | Marks    |
|-----------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|
|           | $\frac{\sin CAB}{11} = \frac{\sin 67^{\circ}}{11.164}$                                                     | Use of sine rule with their (a)                 | M1       |
| 22.20 (b) | $\sin CAB = \frac{11\sin 67^\circ}{11.164}$                                                                | Rearranging and solving                         | M1       |
|           | $CAB = 65.1^{\circ} (1 \text{ d.p.})$                                                                      | Correct answer                                  | A1       |
| 22.20 (c) | $\frac{1}{2} \times 9 \times 11 \times \sin 67^{\circ}$                                                    | Use of area of triangle formula                 | M1       |
|           | = 45.564<br>= 45.6 cm <sup>2</sup> (3 s.f.)                                                                | Correct answer                                  | A1       |
|           | Total                                                                                                      |                                                 | 8 marks  |
| 22.21 (a) | $\frac{ar^5}{ar^2} = \frac{\frac{1}{24}}{\frac{1}{3}} \Longrightarrow r^3 = \frac{1}{8}$ $r = \frac{1}{2}$ | Attempting to find $r^3$                        | M1A1     |
|           | $a\left(\frac{1}{2}\right)^2 = \frac{1}{3}$ $a = \frac{4}{3}$                                              | Substituting to find <i>a</i><br>Correct answer | M1<br>A1 |



| Question  | Answer                                                                                                           | Extra information                                       | Marks    |
|-----------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| 22.21 (b) | $\frac{4}{3} \times \left(\frac{1}{2}\right)^7$                                                                  | Substituting values of $a$ and $r$ and calculating      | M1       |
|           | $=\frac{1}{96}$                                                                                                  | Correct answer                                          | A1       |
| 22.21 (c) | $S_{7} = \frac{\frac{4}{3} \left[ 1 - \left(\frac{1}{2}\right)^{7} \right]}{1 - \frac{1}{2}}$ $= \frac{127}{48}$ | Use of summation formula with $n = 7$<br>Correct answer | M1<br>A1 |
| 22.21 (d) | $S_{\infty} = \frac{\frac{4}{3}}{1 - \frac{1}{2}}$ $= \frac{8}{3}$                                               | Use of sum to infinity formula<br>Correct answer        | M1<br>A1 |
|           | 3<br>Total                                                                                                       |                                                         | 10 marks |



| Question | Answer                                                          | Extra information                                                                              | Marks   |
|----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|
|          | Midpoint of $AC = (4, 3.5)$                                     | Finding a midpoint using any appropriate method                                                | M1      |
|          | The centre lies on the line $y = 3.5$                           | Centre lies on the perpendicular bisector of $AC$                                              | M1      |
|          | Midpoint of $AB = (1.5, 2.5)$ [or midpoint of $BC = (1.5, 6)$ ] | Finding one other midpoint                                                                     | M1      |
|          | Gradient of $AB = -1$                                           |                                                                                                |         |
|          | Gradient of perpendicular bisector of $AB = 1$                  | Finding a perpendicular bisector of one of the lines, then setting $y = 3.5$ and solving for x | M1      |
| 22.22    | Equation of bisector is $y - 2.5 = x - 1.5$ or $y = x + 1$      |                                                                                                |         |
|          | When $y = 3.5$ : $3.5 = x + 1$                                  |                                                                                                |         |
|          | x = 2.5                                                         |                                                                                                |         |
|          | Centre = $(2.5, 3.5)$                                           | Correct centre                                                                                 | A1      |
|          | Radius = $\sqrt{14.5}$                                          | Using the centre and one point on circumference to find radius                                 | A1      |
|          | Equation of circle is $(x - 2.5)^2 + (y - 3.5)^2 = 14.5$        | Substituting information into the equation for a circle                                        | M1A1    |
|          | Total                                                           |                                                                                                | 8 marks |