

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 21 Differentiation methods

Question	Answer	Extra information	Marks
21.1(z)	f'(x) = 2x	Attempting to differentiate using chain rule	M1
21.1 (a)	$f'(x) = \frac{2x}{x^2 - 3}$	Correct numerator and denominator	A1A1
21.1 (b)	Since $x > \sqrt{3}$, the denominator is always positive.	Correct answer and conclusion	B1
	Total		4 marks
	$f'(x) = 8x\cos(4x^2 - 3)$	Attempting to differentiate using chain rule	M1
21.2 (a)		For 8 <i>x</i>	A1
		Fully correct derivative	A1

Question	Answer	Extra information	Marks
	$\cos\theta = 0 \Longrightarrow \theta = \frac{\pi}{2}$	Finding <i>x</i> for maximum point	M1
	$4x^2 - 3 = \frac{\pi}{2}$	Attempting to solve	M1
	$\Longrightarrow x = \sqrt{\frac{\pi + 6}{8}}$	Correct <i>x</i> -coordinate	A1
21.2 (b)	$y = \sin\left[4\left(\sqrt{\frac{\pi+6}{8}}\right)^2 - 3\right]$		
	$=\sin\left[4\left(\frac{\pi+6}{8}\right)-3\right]$		
	$=\sin\frac{\pi}{2}$		
	=1	Correct y-coordinate	A1
	So <i>P</i> has coordinates $\left(\sqrt{\frac{\pi+6}{8}}, 1\right)$		
	Total		7 marks
	$f'(x) = (6x+1)e^{3x^2+x}$	Attempting to differentiate using chain rule	M1
21.3 (a)		For $(6x + 1)$	A1
		Fully correct derivative	A1

Question	Answer	Extra information	Marks
	6x + 1 = 0	Attempting to solve $f'(x) = 0$	M1
21.3 (b)	$x = -\frac{1}{6}$	Correct <i>x</i> -coordinate	A1
	$f''(x) = 6 e^{3x^2 + x} + (6x + 1)^2 e^{3x^2 + x}$	Use of product rule	M1
21.2 (a)		A1 for $6e^{3x^2+x}$	A1
21.3 (c)		A1 for $(6x + 1)^2$	A1
		A1 for $e^{3x^2 + x}$	A1
21.3 (d)	$6e^{3\times\left(-\frac{1}{6}\right)^{2}-\frac{1}{6}} + \left[6\times\left(-\frac{1}{6}\right)+1\right]^{2}e^{3\times\left(-\frac{1}{6}\right)^{2}-\frac{1}{6}} = 5.520$ Since $f''\left(-\frac{1}{6}\right) > 0$, so the stationary point is a minimum.	Correct method and conclusion	B1
	Total		10 marks
	$f'(x) = 2x\cos x - x^2\sin x$	Use of product rule	M1
21.4 (a)		One term correct	A1
		Both terms correct	A1
21.4 (b)	$f'(x) = 0 \implies x(2\cos x - x\sin x) = 0$	For factorising <i>x</i>	M1
21.4 (0)	so $x = 0$ is a solution to $f'(x) = 0$	Correct conclusion	A1
	$f''(x) = 2\cos x - 2x\sin x - (2x\sin x - x^2\cos x)$	Use of product rule	M1
21.4 (c)	$= 2\cos x - 4x\sin x + x^2\cos x$	For unsimplified derivative	A1
		Fully simplified expression	A1

Question	Answer	Extra information	Marks
214(4)	f''(0) = 2		
21.4 (d)	Since $f''(0) > 0$, the stationary point is a minimum.	Correct conclusion	B1
	Total		9 marks
	$f'(x) = 3e^x \cos 3x + e^x \sin 3x$	Use of product rule	M1
		Correct derivative	A1
	$f'(x) = 0 \implies 3\cos 3x + \sin 3x = 0$	Factorising e^x and equating the resulting expression to 0	M1
	Hence $\tan 3x = -3$		
21.5 (a)	3x = 1.8925	For any correct solution to $\tan 3x = -3$	A1
21.5 (a)	x = 0.6308		
	= 0.63	Correct <i>x</i> -coordinate	A1
	$y = e^{0.63} \times \sin(3 \times 0.63)$		
	= 1.7827		
	= 1.78	Correct y-coordinate	A1
	f''(x)	Use of product rule	M1
	$= 3e^x \cos 3x + 3e^x (-3\sin 3x)$	Correct derivative of $3e^x \cos 3x$	A1
21.5 (b)	$+e^x \sin 3x + 3e^x \cos 3x$	Correct derivative of $e^x \sin 3x$	A1
	$= 3e^{x}\cos 3x - 9e^{x}\sin 3x + e^{x}\sin 3x + 3e^{x}\cos 3x$		
	$= 6e^x \cos 3x - 8e^x \sin 3x$	Correct fully simplified answer	A1
21.5 (c)	f'(0.63) = -17.827 < 0 therefore it is a maximum.		B1
	Total		11 marks

Question	Answer	Extra information	Marks
21.6 (a)	$f'(x) = \frac{-x\sin x - \cos x}{2}$	Use of quotient rule	M1
21.0 (a)	x^2	Each of three terms correct	A1A1A1
	$f'\left(\frac{\pi}{3}\right) = \frac{-\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right) - \cos\left(\frac{\pi}{3}\right)}{\left(\frac{\pi}{3}\right)^2} = -1.28$	Substituting <i>x</i> -value into their (a)	M1
21.6 (b)	$f\left(\frac{\pi}{3}\right) = \frac{\cos\left(\frac{\pi}{3}\right)}{\left(\frac{\pi}{3}\right)} = 0.48$	Correct y-coordinate	A1
	Hence $y - 0.48 = -1.28 \left(x - \frac{\pi}{3} \right)$	Use of any correct formula with their f and f'	M1
	\Rightarrow y = -1.28x + 1.82	Correct line	A1
	Total		8 marks
21.7 (a)	$dy = 2e^{2x} \sin x - e^{2x} \cos x$	Use of quotient rule	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{e}^{2x}\sin x - \mathrm{e}^{2x}\cos x}{\left(\sin x\right)^2}$	Each of three terms correct	A1A1A1

Question	Answer	Extra information	Marks
21.7 (b)	When $x = \frac{\pi}{4}$ $\frac{dy}{dx} = \frac{2e^{2x\frac{\pi}{4}}\sin\left(\frac{\pi}{4}\right) - e^{2x\frac{\pi}{4}}\cos\left(\frac{\pi}{4}\right)}{\left[\sin\left(\frac{\pi}{4}\right)\right]^{2}}$ $= \frac{2e^{\frac{\pi}{2}}\frac{\sqrt{2}}{2} - e^{\frac{\pi}{2}}\frac{\sqrt{2}}{2}}{\left(\frac{\sqrt{2}}{2}\right)^{2}}$ $= \frac{e^{\frac{\pi}{2}}\frac{\sqrt{2}}{2}}{\frac{1}{2}}$ $= \sqrt{2}e^{\frac{\pi}{2}}$	Substituting $x = \frac{\pi}{4}$ Substituting trig values and simplifying Correct gradient. Must be exact.	M1 M1 A1
	Total		7 marks
	$u = \mathrm{e}^{4x+1} \Longrightarrow u' = 4\mathrm{e}^{4x+1}$	Attempting to find <i>u</i> '	M1
21.8 (a)	$v = \sin(x^2) \implies v' = 2x \cos(x^2)$ Hence $f'(x) = 4e^{4x+1} \sin(x^2) + 2x e^{4x+1} \cos(x^2)$	Attempting to find v'	M1
21.0 (d)		Use of product rule	M1
	$= 2e^{4x+1} \left[2\sin(x^2) + x\cos(x^2) \right]$	Completely correct solution	A1

Question	Answer	Extra information	Marks
21.8 (b)	In the given domain, $2\sin(x^2) + x\cos(x^2)$ is always positive (square values of x between 0 and 1 and then the sine or cosine gives a positive output).	Sufficient detail must be given to make it clear that the student has considered the sign of both parts of the product	B1
	In the given domain, e^{4x+1} is always positive (exponentials of this form always return positive outputs).		
	Hence $f'(x) > 0$ for the given domain.	Correct conclusion	B1
	Total		6 marks
21.9 (a)	$\frac{\mathrm{d}x}{\mathrm{d}y} = \ln y + \frac{y}{y}$	Use of product rule	M1
	$= \ln y + 1$	Each term. Must be simplified.	A1A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\ln y + 1}$	Use of inverse	M1
21.9 (b)	$\frac{dy}{dx} = \frac{1}{\ln y + 1}$ When $y = 2e$: $\frac{dy}{dx} = \frac{1}{\ln(2e) + 1}$		
	$=\frac{1}{\ln 2+2} \ (=0.3713)$	Correct answer. Accept decimal.	A1
	Total		5 marks

Question	Answer	Extra information	Marks
	$8x + 6y\frac{\mathrm{d}y}{\mathrm{d}x} - 5x\frac{\mathrm{d}y}{\mathrm{d}x} - 5y = 0$	Use of implicit differentiation on $6y^2$ or $5xy$	M1
	$3x + 0y \frac{dx}{dx} - 3x \frac{dy}{dx} - 3y = 0$	Use of implicit differentiation on both $6y^2$ and $5xy$	M1
21.10 (a)		Correct equation	A1
	Hence $\frac{dy}{dy} = \frac{5y - 8x}{6x}$	Attempting to rearrange	M1
	Hence $\frac{dy}{dx} = \frac{5y - 8x}{6y - 5x}$ (o.e.)	Fully correct derivative	A1
21.10 (b)	At (2, 1): $\frac{dy}{dx} = \frac{5-16}{6-10} = \frac{11}{4}$	Using their derivative perpendicular gradient	M1
	At (2, 1): $\frac{dy}{dx} = \frac{5-16}{6-10} = \frac{11}{4}$ $m_{\rm N} = -\frac{4}{11}$	Correct gradient	A1
	Hence $y - 1 = -\frac{4}{11}(x - 2)$	Use of any correct formula with their perpendicular gradient	M1
	4x + 11y - 19 = 0	Correct line in correct form	A1
	Total		9 marks
	$a^{x} + a^{y} dy = 3x dy + 3y$	Use of implicit differentiation on e^y or $3xy$	M1
	$e^{x} + e^{y}\frac{dy}{dx} = 3x\frac{dy}{dx} + 3y$	Use of implicit differentiation on both e^y and $3xy$	M1
21.11		Correct equation	A1
	$dy 3y - e^x$	Attempting to rearrange	M1
	Hence $\frac{dy}{dx} = \frac{3y - e^x}{e^y - 3x}$ (o.e.)	Fully correct derivative	A1
	Total		5 marks

Question	Answer	Extra information	Marks
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t \; ; \; \frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2$	Use of rule for parametric differentiation	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		
	$=\frac{3t^2}{2t}$		
21.12	$=\frac{3}{2}t$	Correct $\frac{dy}{dx}$	A1
21.12	Hence $\frac{dy}{dx} = 3$	Evaluating at $t = 2$	M1
	$m_N = -\frac{1}{3}$	Correct perpendicular gradient	A1
	x = 4, y = 8	Both <i>x</i> and <i>y</i> coordinates correct	B1
	x = 4, y = 8 Hence $y - 8 = -\frac{1}{3}(x - 4)$ 3y + x - 28 = 0 (o.e.)	Use of any correct formula with their perpendicular gradient	M1
	3y + x - 28 = 0 (o.e.)	Correct line	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos 2t$	Correct derivative	B1
	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2\sin 2t$	Correct derivative	B1
21.13 (a)	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dt}{dt}$	Use of rule for parametric differentiation	M1
	$=\frac{-2\sin 2t}{2\cos 2t}$		
	$=-\tan 2t$	Correct derivative	A1
	$-\tan\left(\frac{\pi}{4}\right) = -1$	Evaluating derivative at $t = \frac{\pi}{8}$	M1
21.13 (b)	$x = \frac{\sqrt{2}}{2}, y = \frac{\sqrt{2}}{2}$	Both <i>x</i> and <i>y</i> coordinates correct	B1
21.15 (0)	$-\tan\left(\frac{\pi}{4}\right) = -1$ $x = \frac{\sqrt{2}}{2}, y = \frac{\sqrt{2}}{2}$ Hence $y - \frac{\sqrt{2}}{2} = -\left(x - \frac{\sqrt{2}}{2}\right)$	Use of any correct formula with their <i>m</i>	M1
	$2x + 2y - 2\sqrt{2} = 0$ (o.e.)	Correct line	A1
	Total		8 marks
21.14 (a)	$\frac{dx}{dt} = 3 - 2t$; $\frac{dy}{dt} = 3t^2 - 12$	Both derivatives correct	B1
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{3t^2 - 12}{\mathrm{d}t^2 - 12}$	Use of rule for parametric differentiation	M1
	$\frac{1}{\mathrm{d}x} = \frac{1}{3-2t}$	Correct derivative	A1
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{3t^2 - 12}{12}$	-	

ISBN 9781382057707

Question	Answer	Extra information	Marks
	$3t^2 - 12 = 0 \implies t = \pm 2$	Setting the numerator of $\frac{dy}{dx} = 0$ and attempting to solve	M1
	When $t = 2$: $x = 2$ and $y = -16$ (hence <i>P</i>)	Correct y-coordinate	A1
21.14 (b)	$3 - 2t = 0 \Longrightarrow t = \frac{3}{2}$	Setting the denominator of $\frac{dy}{dx} = 0$ and attempting to solve	M1
	When $t = \frac{3}{2}$: $x = \frac{9}{4}$ (and $y = -\frac{117}{8}$) (hence <i>Q</i>)	Correct <i>x</i> -coordinate	A1
	Area = 22.5×160	Calculating area using their $x \times 10$ and their $y \times 10$	M1
	$= 3600 \text{ (m}^2\text{)}$	Correct area	A1
	Total		9 marks
	Let the side length of the cube $= x$		
	$V = r^3 \Rightarrow \frac{dV}{dr} = 3r^2$	Attempting to find derivative of V with respect to x	M1
	$V = x^3 \Longrightarrow \frac{\mathrm{d}V}{\mathrm{d}x} = 3x^2$	Correct derivative	A1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$		
21.15 (a)			
	$=3x^2 \times 5$		
	$=15x^2$	Use of formula for connected rate of change	M1
	Hence, when $x = 23$, $\frac{dV}{dt} = 7935 \text{ cm}^3 \text{ per second}$	Correct result	A1

Question	Answer	Extra information	Marks
21.15 (b)	$A = 6x^{2} \Longrightarrow \frac{dA}{dx} = 12x$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt}$ $= 12x \times 5$	Attempting to find derivative of <i>A</i> with respect to <i>x</i> Correct derivative	M1 A1
	= 60x	Use of formula for connected rate of change	M1
	Hence, when $x = 18$, $\frac{dA}{dt} = 1080 \text{ cm}^2 \text{ per second}$	Correct result	A1
	Total		8 marks
21.16 (a)	Let the radius of the sphere = r	Attempting to find derivative of V with respect to r	M1
	$V = \frac{4}{3}\pi r^{3} \Rightarrow \frac{dV}{dr} = 4\pi r^{2}$ $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ $= 4\pi r^{2} \times -0.5$ $= -2\pi r^{2}$	Correct derivative	A1
	= $-2\pi r^2$	Use of formula for connected rate of change	M1
	Hence, when $r = 8$, $\frac{dV}{dt} = -128\pi \text{ cm}^3$ per second	Correct result	A1

Question	Answer	Extra information	Marks
21.16 (b)	$A = 4\pi r^2 \implies dA = 8\pi r$	Attempting to find derivative of A with respect to r	M1
	$A = 4\pi r^2 \Longrightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = 8\pi r$	Correct derivative	A1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$		
	$=8\pi r \times -0.5$		
	$=-4\pi r$	Use of formula for connected rate of change	M1
	Hence, when $r = 10$, $\frac{dA}{dt} = -40\pi \text{ cm}^2 \text{ per second}$	Correct result	A1
	Total		8 marks
21.17	$f(x) = (x+4)^2 + 4$	Attempting to complete the square	M1
		Correct expression	A1
	Since $(x + 4)^2 \ge 0$ for all x , $f(x) \ge 4$ for all x	Correct reasoning	A1
	Total		3 marks
21.18	$e^x + 6 - 5e^{-x} = 0$	Multiplying by e ^{<i>x</i>}	M1
	$\Rightarrow e^{2x} + 6e^{x} - 5 = 0$ $e^{x} = -3 \pm \sqrt{14}$	Quadratic equation	A1
	$e^x = -3 \pm \sqrt{14}$	Solving for e ^{<i>x</i>} using calculator or quadratic formula	M1
	Hence $x = \ln\left(-3 + \sqrt{14}\right)$	Correct <i>x</i>	A1
	Total		4 marks