

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 16 Exponential functions

Question	Answer	Extra information	Marks
16.1 (a) (b) (c)	y (b) (a) y = 2 (0, 1) y = 0 (0, -1) (c)	B1 for correct shape and B1 for correct location indicated by asymptote/y-intercept for each graph	B1B1 B1B1 B1B1
	Total		6 marks

Question	Answer	Extra information	Marks
16.2 (a) (b)	(0, 1) $(0, 1)$ $(1, 1)$ $($	 (a) B1 for correct shape B1 for correct location indicated by asymptote/y-intercept (b) B1 for correct shape B1 for correct intercept B1 for correct asymptote 	B1 B1 B1 B1 B1
	Total		5 marks
16.3 (a)	7		B1
16.3 (b)	$28 = 7 \times a^2$	Attempting to solve with their <i>k</i>	M1
	<i>a</i> = 2	Correct <i>a</i> value	A1
	Total		3 marks

Question	Answer	Extra information	Marks
	c = 1	Correct <i>c</i> value	B1
16.4 (a)	5 = A + 1	Attempting to solve with their <i>c</i>	M1
	A = 4	Correct A value	A1
16.4 (b)	Negative: graph slopes downward from left to right.	Do not accept 'negative' only without explanation	B1
	Total		4 marks
16.5 (a)	$\pounds 120000$ is the value of the house when purchased.	Correct answer	B1
Question 16.4 (a) 16.4 (b) 16.5 (a) 16.5 (c) 16.6 (a) 16.6 (b)	$120000 \times e^{\frac{4}{6}}$	Correct substitution	M1
	= £233 728	Correct value	A1
16.5 (c)	The value will increase without limit.		B1
	Total		4 marks
16.6 (a)	300	Correct answer	B1
16.6 (b)	$\frac{8}{1002}$ + 200 - 028 0 so 020	Correct substitution	M1
10.0 (0)	1000 + 200 - 938.980 939	Correct population. Accept 938	A1

Answer	Extra information	Marks
	B1 for shape B1 for clear indication of <i>y</i> -intercept 300	B1 B1
The population will increase without limit, which is unlikely because of limited space and food supplies.	Any valid reason	B1
Total		6 marks
$C = Ae^{kt}$ (o.e.) $95 = Ae^{0} \implies A = 95$ $92.5 = 95e^{k} \implies k = -0.02666 = -0.0267$ Hence $C = 95e^{-0.0267t}$	Correct choice of model Substituting values Substituting values Correct answer	M1 M1 M1 A1
	The population will increase without limit, which is unlikely because of limited space and food supplies. Total $C = Ae^{kt}$ (o.e.) $95 = Ae^0 \Rightarrow A = 95$ $92.5 = 95e^k \Rightarrow k = -0.02666 = -0.0267$ Hence $C = 95e^{-0.0267t}$	Image: P Image: P P Image: P B1 for shape B1 for clear indication of y-intercept 300 B1 for clear indication of y-intercept 300 B1 for clear indication of y-intercept 300 The population will increase without limit, which is unlikely because of limited space and food supplies. Any valid reason Total Carreet choice of model S2.5 = 95e th = $k = -0.02666 = -0.0267$ Correct choice of model Hence $C = 95e^{-0.02677}$ Correct answer Correct answer Correct answer

ISBN 9781382057707

Question	Answer	Extra information	Marks
167 (b)	$C = 95e^{-0.267} = 72.7$	Correct substitution	M1
Question 16.7 (b) 16.7 (c) 16.8 (a) 16.8 (b) 16.9 (a)	The model is reliable since $72.7 \approx 70$	Correct conclusion	A1
16.7 (c)	Make the –0.0267 less negative (o.e.)	Correct answer	B1
	Total		7 marks
Question 16.7 (b) 16.7 (c) 16.8 (a) 16.8 (b) 16.8 (b) 16.9 (a)	$A + 100 = 3100 \Longrightarrow A = 3000$	Correct method	B1
	$100e^{15k} = 211.7$	Substituting values	M1
	$\Rightarrow k = 0.04999 = 0.05$	Correct value of k	A1
	Rate of change = $0.05 \times 100e^{0.05t}$	Writing expression for rate of change	M1
1 < 0 (h)	$= 5e^{0.05t}$	Correct expression	A1
Question 16.7 (b) 16.7 (c) 16.8 (a) 16.8 (b) 16.9 (a)	$8 = 5e^{0.05T} \Longrightarrow T = 9.400$	Substituting and solving for <i>T</i>	M1
	= 9 days	Correct value of T	A1
	Total		7 marks
16.0 (a)	$15000 \times e^{-0.3 \times 2}$	Correct substitution	M1
10.9 (a)	= £8232	Correct value	A1

Question	Answer	Extra information	Marks
16.9 (b)	t (years)	B1 for shape B1 for clear identification of 15000 as the <i>y</i> -intercept	B1 B1
16.9 (c)	Value approaches zero	Correct answer	B1
16.9 (d)	1500 represents a minimum value of the car. This is more realistic since the value of the car is unlikely to ever reach zero.	Both meaning and explanation required for mark	B1
	Total		6 marks
16.10 (a)	g(2) = 7 f(7) = 351	Attempting to find g(2) Correct answer	M1 A1

Question	Answer	Extra information	Marks
	$y = x^3 + 8$		
16.10 (b)	$\sqrt[3]{y-8} = x$	Attempting to rearrange	M1
	$f^{-1}(x) = \sqrt[3]{x-8}$	Correct inverse	A1
16.10 (c)	$g(x) \ge 3$	Accept $y \ge 3$	B1
1610(1)	$x^3 + 8 \ge 1$	Attempting to solve inequality	M1
16.10 (d)	$\Rightarrow x \ge \sqrt[3]{-7}$	Correct domain. Accept any domain where $x \ge \sqrt[3]{-7}$	A1
	Total		7 marks
	$f(1) = 1^3 + 1^2 + 3 \times 1 - 5$	Correct substitution	M1
Question 16.10 (b) 16.10 (c) 16.10 (d) 16.11 (a) 16.11 (b) 16.11 (c)	= 1 + 1 + 3 - 5		
	= 0		
	Hence $(x - 1)$ is a factor	Correct conclusion	A1
	$x^3 + x^2 + 3x - 5 = (x - 1)(x^2 + bx + c)$	Attempting to find quadratic through comparing coefficients or	M1
16 11 (1)	$x^{3} + x^{2} + 3x - 5 = x^{3} + (b - 1)x^{2} + \dots - c$	Extra information $\cdot 8$ $= x$ $= \sqrt[3]{x-8}$ 3 $2\sqrt[3]{x-8}$ 3 $2\sqrt[3]{x-8}$ 3 $2\sqrt[3]{x-8}$ 3 $2\sqrt[3]{x-8}$ 3 $2\sqrt[3]{x-8}$ 3 $2\sqrt[3]{x-7}$ 3 4 3 3 3 4 3 3 4 4 3 3 4 <	
16.11 (0)	$c = 5, b - 1 = 1 \Longrightarrow b = 2$		
	$(x-1)(x^2+2x+5)$	Extra informationAttempting to rearrange Correct inverseAccept $y \ge 3$ Attempting to solve inequality Correct domain. Accept any domain where $x \ge \sqrt[3]{-7}$ Correct substitutionCorrect conclusionAttempting to find quadratic through comparing coefficients by divisionCorrect factorisationAttempting to find discriminant Correct explanation	A1
	$2^2 - 4 \times 1 \times 5 = -16$	Attempting to find discriminant	M1
16.11 (c)	The quadratic factor has no real roots and hence the cubic has just one real root (at $x = 1$).	Correct explanation	A1
	Total		6 marks