

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 14 Trigonometric functions

Question	Answer	Extra information	Marks
14.1 (a)	$y = \sin(x - \frac{\pi}{6})$ $y = \sin(x - \frac{\pi}{6})$ $\frac{1}{2}$ $\frac{\pi}{6}$ $\frac{\pi}{2}$ $y = \sin x$ $\frac{3\pi}{2}$ $2\pi x$	Correct shape Key points $\left(0, -\frac{1}{2}\right), \left(\frac{\pi}{6}, 0\right)$ and $\left(\frac{7\pi}{6}, 0\right)$ indicated. Accept axes labelled with values.	B1 B1

Question	Answer	Extra information	Marks
14.1 (b)	$y = (1 - \sin x)$ $y = \sin x$ $y = \sin x$ $\frac{x}{2}$ $\frac{x}{2}$ $\frac{3\pi}{2}$ $2\pi x$	Correct shape Key points (0, 1) and $\left(\frac{\pi}{2}, 0\right)$ need to be indicated. Accept axes labelled with values.	B1 B1
14.1 (c)	y 2 1 1 $y = \sin x$ $y = 2\sin x$ $y = \sin x$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$ $2\pi^{-x}$	Correct shape Key points $(0, 0)$, $(\pi, 0)$ and $(2\pi, 0)$ need to be indicated. Accept axes labelled with values.	B1 B1
	Total		6 marks

Question	Answer	Extra information	Marks
14.2 (a)	$y = \cos x$ $y = \cos x$ $y = \cos x$ $y = \cos x - 1$ $y = \cos x - 1$	Correct shape Key points (0°, 0) and (360°, 0) need to be indicated. Accept axes labelled with values.	B1 B1
14.2 (b)	$y = \cos x$ $y = \cos x$ $y = \cos x$ $y = -\cos x$ $y = -\cos (x - 30^{\circ})$ $y = -\cos (x - 30^{\circ})$	Correct shape Key points $\left(0^{\circ}, -\frac{\sqrt{3}}{2}\right)$, (120°, 0) and (300°, 0) need to be indicated. Accept axes labelled with values.	B1 B1
14.2 (c)	2	Correct answer	B1
	Total		5 marks

Question	Answer	Extra information	Marks
14.3 (a)	$x = -\frac{\pi}{2}$ $x = -\frac{\pi}{2}$ $x = -\frac{\pi}{2}$ $x = \frac{\pi}{2}$	Correct shape Correctly labelled asymptotes and min/max points	B1 B1
14.3 (b)	$ y \ge 1$	Accept $ \sec x \ge 1$ or $f(x) \ge 1$ but not $ x \ge 1$	B1
14.3 (c)	Because the period of the function is 2π	Correct reason	B1
	Total		4 marks

Question	Answer	Extra information	Marks
14.4 (a)	$y_{10}^{y}_{10}_{-5}_{-5}_{-10}_{-10}^{0^{\circ}}$ $y_{10}^{v}_{10^{\circ}}_{-5^{\circ}}_{-5^{\circ}}_{-5^{\circ}}_{-10^{\circ}}_{-10^$	Correct shape Correctly labelled asymptotes and intersections	B1 B1
14.4 (b)	y 10 5 $y = 2 + \cot x$ $y = \cot x$ $y = \cot x$ $y = \cot x$ y = -5 -10 y = -10	Clear vertical translation Completely correct graph	B1 B1
14.4 (c)	The transformation is a translation in the <i>y</i> -direction so the asymptotes do not move.	Correct answer	B1
	Total		5 marks
14.5 (a)	$\left(\frac{\pi}{2},1\right)$	Correct values	B1
14.5 (b)	$\left(\frac{\pi}{6},2\right)$	One mark for each value	B1B1

Question	Answer	Extra information	Marks
	Total		3 marks
14.6 (a)	$A(-1,\pi)$	Correct answers only	B1
	$B\left(0,\frac{\pi}{2}\right)$		B1
	<i>C</i> (1, 0)		B1
14.6 (b)(i)	$y = \arccos x$ $y = \arccos(-x)$ $y = \arccos(-x)$ x	Correct graph	B1

Question	Answer	Extra information	Marks
14.6 (b)(ii)	$y = \arccos(x - 1)$ $y = \arccos(x - 1)$ x	Correct graph	B1
	Total		5 marks
14.7 (a)	2.05 m	Correct answer	B1
14.7 (b)	$2 + 0.05 \cos(20 \times 0.1)$	Correct substitution	M1
14.7 (b)	= 1.98 metres	Correct answer	A1
14.7 (c)	1.95 metres	Correct minimum	B1
	Occurs when $\cos(20t) = -1$	Correct equation	M1
	$20t = \pi$		
	$\Rightarrow t = 0.157$ seconds	Correct value of <i>t</i>	A1

Question	Answer	Extra information	Marks
	$0.05 \cos(20t) = 0.01$	Correct equation	M1
	Hence $\cos(20t) = 0.2$	Attempting to solve	M1
14.7 (d)	20t = 1.369, 4.914, 7.652, 11.197		
	t = 0.07, 0.25, 0.38, 0.56 (seconds)	One correct value	A1
		All correct values	A1
	Total		10 marks
	$a = \frac{4}{9}, r = -\frac{2}{3}$	Identifying <i>a</i> and <i>r</i>	B1
14.8	$S_{\infty} = \frac{\frac{4}{9}}{1 - \left(-\frac{2}{3}\right)} = \frac{\frac{4}{9}}{\frac{5}{3}}$	Use of sum to infinity	M1
	$=\frac{4}{9} \times \frac{3}{5}$ $=\frac{4}{15}$	Correct value	A1
	Total		3 marks
14.9 (a)	They have used degrees rather than radians.	Correct reason	B1
14.9 (b)	$\operatorname{arc} AB = \frac{86\pi}{180} \times 7.3$	Correct formula	M1
	= 10.96 (cm)	Correct area	A1

Question	Answer	Extra information	Marks
14.9 (c)	$\frac{1}{2} \times 7.3^2 \times \frac{86\pi}{180} = 39.9936 \text{ cm}^2$	Correct formula	M1
	$= 39.9936 \text{ cm}^2$ = 40.0 cm ² (3 s.f.)	Correct area	A1
	Area of triangle: $\frac{1}{2} \times 7.3^2 \times \sin\left(\frac{86\pi}{180}\right) = 26.5800$	Area of triangle	M1
14.9 (d)	Area of segment = '39.9936' - '26.5800' = 13.4136	Subtracting from their (b)	M1
	$= 13.4 \text{ cm}^2 (3 \text{ s.f.})$	Correct area	A1
	Total		8 marks
14.10	$\cos 5\theta = 1 - \frac{(5\theta)^2}{2} = 1 - \frac{25}{2}\theta^2$	One correct substitution	M1
	$\frac{1 - \left(1 - \frac{25}{2}\theta^2\right)}{3\theta \times 7\theta}$	Correct expression in θ only	M1
	$=\frac{25}{42}$	Correct value	A1
	Total		3 marks