

## **Oxford Revise | Edexcel A Level Maths | Answers**

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as  $g = 9.8 \text{ m s}^{-2}$  unless stated otherwise in the question.

## **Chapter 13 Trigonometric ratios**

| Question | Answer                                                                                   | Extra information                                     | Marks    |
|----------|------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|
| 13.1 (a) | $\frac{1}{2} \times 14 \times 12 \times \frac{\sqrt{3}}{2} = 42\sqrt{3} \ (\text{cm}^2)$ | Use of area of a triangle formula<br>Correct solution | M1<br>A1 |
|          | $AC^{2} = 14^{2} + 12^{2} - 2 \times 14 \times 12 \times \cos\left(\frac{\pi}{3}\right)$ | Use of cosine rule                                    | M1       |
|          | $AC^2 = 340 - 168 = 172$<br>Hence $AC = 2\sqrt{43}$ (cm)                                 | Value of $AC^2$                                       | A1       |
|          | Hence $AC = 2\sqrt{43}$ (cm)                                                             | Correct solution. Must be exact.                      | A1       |
|          | Total                                                                                    |                                                       | 5 marks  |



| Question | Answer                                                                | Extra information                                                                                                       | Marks   |
|----------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|
| 13.2 (a) | $QS^2 = 250^2 + 190^2 - 2 \times 250 \times 190 \times \cos 47^\circ$ | Use of cosine rule                                                                                                      | M1      |
|          | $QS^2 = 33810.15$                                                     | Value of $QS^2$                                                                                                         | A1      |
|          | Hence $QS = 183.87 = 184$ (m) (3 s.f.)                                | Correct solution. Must be to at least 3 s.f.                                                                            | A1      |
| 13.2 (b) | $\frac{QR}{\sin 39^\circ} = \frac{210}{\sin 51^\circ}$                | Use of sine rule                                                                                                        | M1      |
|          | $\Rightarrow QR = 170.05 = 170 \text{ (m)} (3 \text{ s.f.})$          | Correct solution. Must be to at least 3 s.f.                                                                            | A1      |
| 13.2 (c) | $\frac{1}{2} \times 190 \times 250 \times \sin 47^{\circ}$            | Finding either triangle area                                                                                            | M1      |
|          | $+ \frac{1}{2} \times 184' \times 170' \times \sin 51^{\circ}$        | Adding areas                                                                                                            | M1      |
|          | = 17 369.65041 + 12 154.56284<br>= 29 524.21                          | Either area correct. Value of second area will vary depending whether exact or rounded answers to (a) and (b) are used. | A1      |
|          | $= 29500 (\mathrm{m}^2)$ (to 3.s.f)                                   | Correct area                                                                                                            | A1      |
|          | Total                                                                 |                                                                                                                         | 9 marks |
| 13.3 (a) | $50 = 1.8x \Longrightarrow x = \frac{250}{9}$                         | Attempting to find <i>x</i>                                                                                             | M1      |
|          | Area = $\frac{1}{2} \left(\frac{250}{9}\right)^2 \times 1.8$          | Use of area formula with their x                                                                                        | M1      |
|          | $=\frac{6250}{9}$ (cm <sup>2</sup> )                                  | Correct answer                                                                                                          | A1      |



| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extra information                              | Marks    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|
| 13.3 (b) | $AB^{2} = \left(\frac{250}{9}\right)^{2} + \left(\frac{250}{9}\right)^{2} - 2 \times \frac{250}{9} \times$ | Use of cosine rule                             | M1       |
|          | = $1893.83$<br>Hence $AB = 43.518 = 43.5$ (3 s.f.)<br>+ 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Correct AB                                     | A1       |
|          | = 93.5  (cm) (3  s.f.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Correct solution to correct degree of accuracy | A1       |
|          | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | 6 marks  |
| 13.4 (a) | $\cos AOB = \frac{14.7^2 + 14.7^2 - 23.3^2}{2 \times 14.7 \times 14.7}$<br>= -0.2561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Use of cosine rule                             | M1       |
|          | $= -0.2561$ Angle $AOB = \cos^{-1} (`-0.2561')$<br>= 104.8° (1 d.p.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inverse cosine of their value<br>Correct angle | M1<br>A1 |
| 13.4 (b) | Area of major sector = $\frac{360 - '104.8'}{360} \times \pi \times 14.7^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Use of area of sector                          | M1       |
|          | = 481.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correct sector area                            | A1       |
|          | Area of triangle $AOB = \frac{1}{2} \times 14.7^2 \times \sin 104.8^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Use of area of triangle                        | M1       |
|          | = 104.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correct triangle area                          | A1       |
|          | Total area = $481.16 + 104.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |          |
|          | $= 586 \ (m^2) \ (3 \ s.f.)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Correct cross-section area                     | A1       |



| Question | Answer                                                                                                                                          | Extra information                                                                            | Marks    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------|
| 13.4 (c) | 586 × 12                                                                                                                                        | One correct step                                                                             | M1       |
|          | $\times 1.2 \times 110 = \text{\pounds}927622.77 = \text{\pounds}928000$                                                                        | Complete correct method                                                                      | M1A1     |
|          | Total                                                                                                                                           |                                                                                              | 11 marks |
| 13.5     | $\cos 4x = 1 - \frac{(4x)^2}{2} = 1 - 8x^2$ $\frac{1 - 8x^2 - 1}{x \times 5x} = -\frac{8}{5}$                                                   | One correct approximation                                                                    | M1       |
|          | $1-8x^2-1$ 8                                                                                                                                    | Two correct approximations to reach expression in <i>x</i> only                              | M1       |
|          | $\frac{1}{x \times 5x} = -\frac{1}{5}$                                                                                                          | Correct answer                                                                               | A1       |
|          | Total                                                                                                                                           |                                                                                              | 3 marks  |
| 13.6     | $\cos 3x = 1 - \frac{(3x)^2}{2} = 1 - \frac{9}{2}x^2$                                                                                           | One correct approximation                                                                    | M1       |
|          | Total<br>$ \frac{\cos 3x = 1 - \frac{(3x)^2}{2} = 1 - \frac{9}{2}x^2}{\frac{1 - \left(1 - \frac{9}{2}x^2\right)}{2x \times 6x} = \frac{3}{8}} $ | Two correct approximations to reach expression in <i>x</i> only<br>Correct answer            | M1<br>A1 |
|          | Total                                                                                                                                           |                                                                                              | 3 marks  |
| 13.7 (a) | $\tan 4x \cos 3x = 4x \left( 1 - \frac{(3x)^2}{2} \right)$                                                                                      | One correct approximation<br>Two correct approximations to reach expression in <i>x</i> only | M1<br>A1 |
|          | $=4x-18x^3$                                                                                                                                     | Correct answer                                                                               | A1       |



| Question | Answer                                                                               | Extra information                        | Marks   |
|----------|--------------------------------------------------------------------------------------|------------------------------------------|---------|
| 13.7 (b) | x = 0.05                                                                             | Identifying value for <i>x</i>           | B1      |
|          | Percentage error = $\frac{0.200430.19775}{0.20043} \times 100$                       | Use of percentage error formula          | M1      |
|          | = 1.34% (3 s.f.)                                                                     | Correct percentage                       | A1      |
|          | Total                                                                                |                                          | 6 marks |
|          | $u_2 = 7k - 3$                                                                       | Correct <i>u</i> <sub>2</sub>            | B1      |
| 13.8 (a) | $u_3 = k(7k - 3) - 3$                                                                | Substituting their $u_2$                 | M1      |
|          | $=7k^2-3k-3$                                                                         | Correct expression                       | A1      |
|          | $(7k^2 - 3k - 3) = 97$                                                               | Setting their expression from $(a) = 97$ | M1      |
| 13.8 (b) | $7k^2 - 3k - 100 = 0$                                                                | All three terms correct in quadratic     | A1      |
|          | $7k^2 - 3k - 100 = 0$ $\implies k = 4 \text{ or } k = -\frac{25}{7}$                 | Correct values of k                      | A1      |
|          | Total                                                                                |                                          | 6 marks |
| 13.9 (a) | $500 + 8 \times 150 = 1700 \text{ (m)}$                                              | Use of correct formula                   | M1      |
|          |                                                                                      | Correct distance                         | A1      |
| 13.9 (b) | $\frac{20}{2} [1000 + (20 - 1) \times 150]$                                          | Use of correct formula                   | M1      |
|          | $= 38500 (\mathrm{m})$                                                               | Correct answer                           | A1      |
| 13.9 (c) | No. $500 + 19 \times 150 = 3350$ m, or $3.35$ km, is the furthest that Tiye has run. | Correct explanation                      | B1      |
|          | Total                                                                                |                                          | 5 marks |