

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 27 Vectors

Question	Answer	Extra information	Marks
27.1 (a)	10 9 8 7 10 10 10 10 10 11 10 11 12 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18	Correct vector drawn Arrow pointing in the correct direction	1
27.1 (b)	$2\mathbf{b} + 3\mathbf{a} = 2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ $= \begin{pmatrix} 4 \\ -2 \end{pmatrix} + \begin{pmatrix} 3 \\ 9 \end{pmatrix}$ $= \begin{pmatrix} 7 \\ 7 \end{pmatrix}$	2 b and 3 a both correct Correct vector	1
27.2 (a)	$\overrightarrow{OT} = \overrightarrow{QO} = -\mathbf{a}$		1
27.2 (b)	$\overrightarrow{PQ} = -\mathbf{b} + \mathbf{a}$		1

Question	Answer	Extra information	Marks
27.2 (c)	$\overrightarrow{OU} = \mathbf{b} - \mathbf{a}$		1
27.2 (d)	$\overrightarrow{UQ} = \overrightarrow{UO} + \overrightarrow{OQ}$ $= \mathbf{a} - \mathbf{b} + \mathbf{a}$ $= 2\mathbf{a} - \mathbf{b}$		1
27.3	Let q be the vector $\mathbf{q} = \begin{pmatrix} x \\ y \end{pmatrix}$ $2\mathbf{q} - 5\mathbf{p} = 2 \begin{pmatrix} x \\ y \end{pmatrix} - 5 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ $= \begin{pmatrix} 2x - 20 \\ 2y + 5 \end{pmatrix}$ Therefore $2x - 20 = -26 \Rightarrow x = -3$ and $2y + 5 = 15 \Rightarrow y = 5$ $\mathbf{q} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$	Letting $\mathbf{q} = \begin{pmatrix} x \\ y \end{pmatrix}$ and writing $2\mathbf{q} - 5\mathbf{p} = 2 \begin{pmatrix} x \\ y \end{pmatrix} - 5 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ Equating the vector components and attempting to solve for x and y . Correct answer	1 1 1
27.4	$\overrightarrow{OC} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$	C correctly plotted Correct column vector	1

Question	Answer	Extra information	Marks
27.5	$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \mathbf{b} - \mathbf{a}$ $\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = \frac{1}{2}\overrightarrow{OA} + \frac{4}{5}\overrightarrow{AB}$ $= \frac{1}{2}\mathbf{a} + \frac{4}{5}(\mathbf{b} - \mathbf{a})$ $= \frac{4}{5}\mathbf{b} - \frac{3}{10}\mathbf{a}$	1 mark for each line	4
27.6	$\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ} = \mathbf{q} - \mathbf{p}$ $PQ : QR = 2 : 3, \overrightarrow{PR} = \frac{5}{2} \overrightarrow{PQ} = \frac{5}{2} (\mathbf{q} - \mathbf{p})$ $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PR} = p + \frac{5}{2} (\mathbf{q} - \mathbf{p}) = \frac{5}{2} \mathbf{q} - \frac{3}{2} \mathbf{p}$ $= \frac{1}{2} (5\mathbf{q} - 3\mathbf{p})$ This is a multiple of $5\mathbf{q} - 3\mathbf{p}$, so it is parallel	1 mark for each line	5

Question	Answer	Extra information	Marks
27.7	$\overrightarrow{OP} = \frac{3}{4}\mathbf{a}, \overrightarrow{PA} = \frac{1}{4}\mathbf{a}, \overrightarrow{OQ} = k\mathbf{b}$ where k is a scalar constant. $\overrightarrow{AQ} = \overrightarrow{AO} + \overrightarrow{OQ} = -\mathbf{a} + k\mathbf{b}$ $\overrightarrow{PM} = \overrightarrow{PA} + \overrightarrow{AM} = \overrightarrow{PA} + \frac{1}{2}\overrightarrow{AQ}$ $= \frac{1}{4}\mathbf{a} + \frac{1}{2}(-\mathbf{a} + k\mathbf{b}) = -\frac{1}{4}\mathbf{a} + \frac{1}{2}k\mathbf{b}$ $\overrightarrow{PB} = \overrightarrow{PO} + \overrightarrow{OB} = -\frac{3}{4}\mathbf{a} + \mathbf{b}$ $= 3\overrightarrow{PM}$ So $1 = 3 \times \frac{1}{2}k$ $k = \frac{2}{3}$ Substituting into \overrightarrow{OQ} : $\overrightarrow{OQ} = \frac{2}{3}\mathbf{b}$ So $OQ: QB = 2:1$	$\overrightarrow{OP} = \frac{3}{4}\mathbf{a}$ or $\overrightarrow{PA} = \frac{1}{4}\mathbf{a}$ Attempt to find \overrightarrow{AQ} in terms of \mathbf{a} and \mathbf{b} Use of $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AQ}$ Full process to solve for k Final answer	1 1 1 1

Question	Answer	Extra information	Marks
27.8	$\overrightarrow{CB} = 3\mathbf{a}$ $\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = -9\mathbf{a} + \mathbf{c}$ $\overrightarrow{AP} = \frac{3}{4}AC = -\frac{27}{4}\mathbf{a} + \frac{3}{4}\mathbf{c}$ $\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB} = 3\mathbf{a} + \mathbf{c}$ $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = 9\mathbf{a} - \frac{27}{4}\mathbf{a} + \frac{3}{4}\mathbf{c} = \frac{9}{4}\mathbf{a} + \frac{3}{4}\mathbf{c}$ $\overrightarrow{OP} = \frac{3}{4}\overrightarrow{OB}$ Thus O , P and B are collinear	$\overrightarrow{CB} = 3\mathbf{a}$ Attempt to find \overrightarrow{AP} in terms of \mathbf{a} and \mathbf{b} Attempt to find \overrightarrow{OP} in terms of \mathbf{a} and \mathbf{b} Shows that \overrightarrow{OP} and \overrightarrow{OB} are multiples, thus collinear	1 1 1
27.9 (a)	Convert km/h to m/s $8 \text{ km/h} = \frac{8 \times 1000}{60 \times 60} \text{ m/s}$ $= 2.22 \text{ m/s}$ Jordan is faster	Correct calculation for conversion Clear comparison of the two speeds	1 1
27.9 (b)	Distance = 8.5 km $2.5 \text{ m/s} = \frac{2.5 \times 60 \times 60}{1000} = 9 \text{ km/h}$ Combined speed of runners = $8 + 9 = 17 \text{ km/h}$ $8.5 \div 17 = 0.5 \text{ hours}$ The runners will pass each other after 30 minutes	Attempt to combine speeds Dividing total distance by combined speeds Correct answer	1 1 1

Question	Answer	Extra information	Marks
27.9 (c)	Riley's speed is $8 \text{ km/h} = 4 \text{ km per } 30 \text{ minutes}$ The runners meet $4 \text{ km from point A}$	Attempt to convert 8 km/h to km per your time from part b Correct answer, including units (4 km or 4000 m)	1
27.10	Consider an unknown angle (ABC) in a semicircle as shown. B A x r r C Let $\angle BAC = x$ and let $\angle BCA = y$ Let the radius of the circle be r . $OC = OA = OB = r$ As the base angles of an isosceles triangle are equal, $\angle OBA = x, \angle OBC = y$ So, $\angle ACB = x + y$ Angles in a triangle add to 180° : $x + y + x + y = 180$ $2(x + y) = 180$ $x + y = 90$ Therefore, the angle in a semicircle is a right angle	Clear use of isosceles triangle to identify angle OCA (= x) or angle OCB (= y) $ACB = x + y$ $x + y + x + y = 180$ Fully correct proof	1 1 1 1