

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 27 Vectors

Question	Answer	Extra information	Marks
27.1 (a)		Correct vector drawn Arrow pointing in the correct direction	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
27.1 (b)	$\begin{aligned} 2 \mathbf{b}+3 \mathbf{a} & =2\binom{2}{-1}+3\binom{1}{3} \\ & =\binom{4}{-2}+\binom{3}{9} \\ & =\binom{7}{7} \end{aligned}$	$\mathbf{2 b}$ and $3 \mathbf{a}$ both correct Correct vector	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
27.2 (a)	$\overrightarrow{O T}=\overrightarrow{Q O}=-\mathbf{a}$		1
27.2 (b)	$\overrightarrow{P Q}=-\mathbf{b}+\mathbf{a}$		1

Question	Answer	Extra information	Marks
27.2 (c)	$\overrightarrow{O U}=\mathbf{b}-\mathbf{a}$		1
27.2 (d)	$\begin{aligned} \overrightarrow{U Q} & =\overrightarrow{U O}+\overrightarrow{O Q} \\ & =\mathbf{a}-\mathbf{b}+\mathbf{a} \\ & =2 \mathbf{a}-\mathbf{b} \end{aligned}$		1
27.3	Let \mathbf{q} be the vector $\mathbf{q}=\binom{x}{y}$ $\begin{aligned} 2 \mathbf{q}-5 \mathbf{p} & =2\binom{x}{y}-5\binom{4}{-1} \\ & =\binom{2 x-20}{2 y+5} \end{aligned}$ Therefore $2 x-20=-26 \Rightarrow x=-3$ and $2 y+5=15 \Rightarrow y=5$ $\mathbf{q}=\binom{-3}{5}$	Letting $\mathbf{q}=\binom{x}{y}$ and writing $2 \mathbf{q}-5 \mathbf{p}=2\binom{x}{y}-5\binom{4}{-1}$ Equating the vector components and attempting to solve for x and y. Correct answer	1
27.4	$\overrightarrow{O C}=\binom{3}{3}$	C correctly plotted Correct column vector	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
27.5	$\begin{aligned} \overrightarrow{A B} & =\overrightarrow{A O}+\overrightarrow{O B}=\mathbf{b}-\mathbf{a} \\ \overrightarrow{M N} & =\overrightarrow{M A}+\overrightarrow{A N}=\frac{1}{2} \overrightarrow{O A}+\frac{4}{5} \overrightarrow{A B} \\ & =\frac{1}{2} \mathbf{a}+\frac{4}{5}(\mathbf{b}-\mathbf{a}) \\ & =\frac{4}{5} \mathbf{b}-\frac{3}{10} \mathbf{a} \end{aligned}$	1 mark for each line	4
27.6	$\begin{aligned} & \overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q}=\mathbf{q}-\mathbf{p} \\ & P Q: Q R=2: 3, \overrightarrow{P R}=\frac{5}{2} \overrightarrow{P Q}=\frac{5}{2}(\mathbf{q}-\mathbf{p}) \\ & \overrightarrow{O R}=\overrightarrow{O P}+\overrightarrow{P R}=p+\frac{5}{2}(\mathbf{q}-\mathbf{p})=\frac{5}{2} \mathbf{q}-\frac{3}{2} \mathbf{p} \\ & \quad=\frac{1}{2}(5 \mathbf{q}-3 \mathbf{p}) \end{aligned}$ This is a multiple of $5 \mathbf{q}-3 \mathbf{p}$, so it is parallel	1 mark for each line	5

Question	Answer	Extra information	Marks
27.7	$\overrightarrow{O P}=\frac{3}{4} \mathbf{a}, \overrightarrow{P A}=\frac{1}{4} \mathbf{a}, \overrightarrow{O Q}=k \mathbf{b}$ where k is a scalar constant. $\begin{aligned} \overrightarrow{A Q} & =\overrightarrow{A O}+\overrightarrow{O Q}=-\mathbf{a}+k \mathbf{b} \\ \overrightarrow{P M} & =\overrightarrow{P A}+\overrightarrow{A M}=\overrightarrow{P A}+\frac{1}{2} \overrightarrow{A Q} \\ & =\frac{1}{4} \mathbf{a}+\frac{1}{2}(-\mathbf{a}+k \mathbf{b})=-\frac{1}{4} \mathbf{a}+\frac{1}{2} k \mathbf{b} \\ \overrightarrow{P B} & =\overrightarrow{P O}+\overrightarrow{O B}=-\frac{3}{4} \mathbf{a}+\mathbf{b} \\ & =3 \overrightarrow{P M} \\ \text { So } 1 & =3 \times \frac{1}{2} k \\ k & =\frac{2}{3} \end{aligned}$ Substituting into $\overrightarrow{O Q}$: $\overrightarrow{O Q}=\frac{2}{3} \mathbf{b}$ So $O Q: Q B=2: 1$	$\overrightarrow{O P}=\frac{3}{4} \mathbf{a} \text { or } \overrightarrow{P A}=\frac{1}{4} \mathbf{a}$ Attempt to find $\overrightarrow{A Q}$ in terms of a and b Use of $\overrightarrow{A M}=\frac{1}{2} \overrightarrow{A Q}$ Full process to solve for k Final answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
27.8	$\begin{aligned} & \overrightarrow{C B}=3 \mathbf{a} \\ & \overrightarrow{A C}=\overrightarrow{A O}+\overrightarrow{O C}=-9 \mathbf{a}+\mathbf{c} \\ & \overrightarrow{A P}=\frac{3}{4} A C=-\frac{27}{4} \mathbf{a}+\frac{3}{4} \mathbf{c} \\ & \overrightarrow{O B}=\overrightarrow{O C}+\overrightarrow{C B}=3 \mathbf{a}+\mathbf{c} \\ & \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}=9 \mathbf{a}-\frac{27}{4} \mathbf{a}+\frac{3}{4} \mathbf{c}=\frac{9}{4} \mathbf{a}+\frac{3}{4} \mathbf{c} \\ & \overrightarrow{O P}=\frac{3}{4} \overrightarrow{O B} \end{aligned}$ Thus O, P and B are collinear	$\overrightarrow{C B}=3 \mathbf{a}$ Attempt to find $\overrightarrow{A P}$ in terms of \mathbf{a} and \mathbf{b} Attempt to find $\overrightarrow{O P}$ in terms of \mathbf{a} and \mathbf{b} Shows that $\overrightarrow{O P}$ and $\overrightarrow{O B}$ are multiples, thus collinear	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
27.9 (a)	Convert km/h to m / s $\begin{aligned} 8 \mathrm{~km} / \mathrm{h} & =\frac{8 \times 1000}{60 \times 60} \mathrm{~m} / \mathrm{s} \\ & =2.22 . . \mathrm{m} / \mathrm{s} \end{aligned}$ Jordan is faster	Correct calculation for conversion Clear comparison of the two speeds	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
27.9 (b)	Distance $=8.5 \mathrm{~km}$ $2.5 \mathrm{~m} / \mathrm{s}=\frac{2.5 \times 60 \times 60}{1000}=9 \mathrm{~km} / \mathrm{h}$ Combined speed of runners $=8+9=17 \mathrm{~km} / \mathrm{h}$ $8.5 \div 17=0.5$ hours The runners will pass each other after 30 minutes	Attempt to combine speeds Dividing total distance by combined speeds Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
27.9 (c)	Riley's speed is $8 \mathrm{~km} / \mathrm{h}=4 \mathrm{~km}$ per 30 minutes The runners meet 4 km from point A	Attempt to convert $8 \mathrm{~km} / \mathrm{h}$ to km per your time from part b Correct answer, including units (4 km or 4000 m)	1 1
27.10	Consider an unknown angle (ABC) in a semicircle as shown. Let $\angle B A C=x$ and let $\angle B C A=y$ Let the radius of the circle be r. $O C=O A=O B=r$ As the base angles of an isosceles triangle are equal, $\angle O B A=x, \angle O B C=y$ So, $\angle A C B=x+y$ Angles in a triangle add to 180° : $\begin{aligned} & x+y+x+y=180 \\ & 2(x+y)=180 \\ & x+y=90 \end{aligned}$ Therefore, the angle in a semicircle is a right angle	Clear use of isosceles triangle to identify angle $O C A(=x)$ or angle $O C B(=y)$ $A C B=x+y$ $x+y+x+y=180$ Fully correct proof	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

