OXFORD REVISE

Oxford Revise | Edexcel GCSE Maths Foundation| Answers

Chapter 21 Circles, cylinders, cones, and spheres

Question	Answer	Extra information	Marks
21.1 (a)	Area $=\pi \times 9=28.2743 \ldots$ Area $=28.3 \mathrm{~mm}^{2}$, to 3 sf	Correct calculation 9π or $28.2743 \ldots$ Answer correct to 3 sf	1
21.1 (b)	Circumference $=6 \pi \mathrm{~mm}=18.8 \mathrm{~mm}$	Correct calculation 6π or $18.84 \ldots$ Correct answer to 3 sf	
21.2 (a)	Tangent		1
21.2 (b)	Segment	1	
21.3 (a)	Area $=\pi \times 4^{2}=16 \pi \mathrm{~cm}^{2}$	1	

Question	Answer	Extra information	Marks
$21.5(\mathrm{~b})$	Perimeter $=\frac{\pi d}{2}+d=\frac{\pi \times 9}{2}+9=23.1 \mathrm{~cm}$	$\frac{\pi d}{2}+d$ Answer correct to 1 dp	1
21.6 (a)	Area $=\pi \times 13^{2} \times \frac{200}{360}=295.0 \mathrm{~cm}^{2}(1 \mathrm{dp})$	Correct formula Answer correct to 1 dp	
21.6 (b)	Arc length $=2 \times \pi \times 13 \times \frac{200}{360}=45.4 \mathrm{~cm}(1 \mathrm{dp})$	Correct formula Answer correct to 1 dp	1
21.7 (a)	60°	1	

Question	Answer	Extra information	Marks
21.9	Large semi-circular diameter $=19.3+4.9=24.2 \mathrm{~m}$ Perimeter $=\frac{4.9 \pi}{2}+\frac{19.3 \pi}{2}+\frac{24.2 \pi}{2}=76.0 \mathrm{~m}$	$\frac{4.9 \pi}{2} \text { or } \frac{19.3 \pi}{2} \text { or } \frac{24.2 \pi}{2}$ Adding perimeters of all three semicircles Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
21.10 (a)	Volume $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \times 18.2^{3}=25252.4 \mathrm{~cm}^{3}$	Correct formula Correct answer to 1 dp	
21.10 (b)	Surface area $=4 \pi r^{2}=4 \pi \times 18.2^{2}=4162.5 \mathrm{~cm}^{2}$	Correct formula Correct answer to 1 dp	
21.11	$\begin{aligned} \text { Surface area } & =400 \pi=4 \pi \times r^{2} \\ 100 & =r^{2} \\ r & =10 \end{aligned}$ Radius is 10 cm	$4 \pi r^{2}=400 \pi \text { or } r^{2}=100$ Correct answer	1
21.12 (a)	Volume $=\frac{1}{3} \pi \times 10^{2} \times 24=800 \pi \mathrm{~cm}^{3}$	$\frac{1}{3} \pi \times 10^{2} \times 24$ Correct answer	

Question	Answer	Extra information	Marks
21.12 (b)	Curved surface area $=\pi \times 10 \times 26=260 \pi$ Base area $=\pi \times 10^{2}=100 \pi$ Total area $=360 \pi \mathrm{~cm}^{2}$	$\begin{aligned} & \pi \times 10 \times 26 \\ & \pi \times 10^{2} \end{aligned}$ Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
21.13	Area of the square base $=230^{2}$ Volume $=\frac{1}{3} \times 230^{2} \times 147=2592100$ Volume $=2600000 \mathrm{~m}^{3}(2 \mathrm{sf})$	$\begin{aligned} & 230^{2} \\ & \frac{1}{3} \times 230^{2} \times 147 \end{aligned}$ Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
21.14	Curved surface area $=21 \pi=\pi \times r \times 7$ $r=3$ Area of base $=\pi \times 3^{2}=9 \pi=28.3 \mathrm{~cm}^{2}(1 \mathrm{dp})$	Use formula for curved surface area Attempt to solve equation for r Use formula for area of base with your ' r ' Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
21.15	Volume of hemisphere $=\frac{2}{3} \pi r^{3}=\frac{2}{3} \pi \times 12^{3}=1152 \pi$ Volume of cylinder $=\pi r^{2} h=\pi \times 12^{2} \times 6=864 \pi$ Total volume $=1152 \pi+864 \pi=2016 \pi$	Attempt to use $\frac{2}{3} \pi r^{3}$ with $r=12$ Attempt to use $\pi r^{2} h$ with $r=12$ Add the two together Correct answer, in terms of π	1

Question	Answer	Extra information	Marks
21.16	$\begin{align*} & 2 x-3 y=18 \\ & 3 x+4 y=-7 \tag{2} \end{align*}$ Multiply (1) by 4 and (2) by 3 , then add the equations: $\begin{aligned} & 8 x-12 y=72 \\ & \frac{9 x+12 y=-21}{} \\ & \hline 17 x=51 \\ & x=3 \end{aligned}$ Substitute $x=3$ into either (1) or (2) to get $y=-4$	Attempt to eliminate either x or Correct equation in either x or y Solve to give $x=3$ or $y=4$ Correct answer	1 1 1 1
21.17 (a)	$x^{2}+6 x+9=(x+3)(x+3)$		1
21.17 (b)	Side length $=(x+3)$		1
21.17 (c)	Perimeter $=4(x+3)=4 x+12$		1

