

## Oxford Revise | OCR Computer Science | Answers

Chapter 2 Hexadecimal numbers

| Question | Answer | Extra information | Marks | AO / Specification reference |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $16 \quad 1$ <br> C B $12 \times 16+11 \times 1$ $203$ | Digits correctly lined up under correct place values or <br> Correct calculation to show multipliers of all place values. <br> Correct answer. | $1$ | $\begin{aligned} & \mathrm{AO2} \\ & \text { 1.2.4 } \end{aligned}$ |


| Question | Answer | Extra information | Marks | AO / Specification reference |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $210 \div 16=13$ remainder 2 <br> The first digit is 13, which is E in hexadecimal <br> The second digit is 2 <br> E2 | Indication of 210 being divided by 16 showing the result and remainder. <br> Correct answer. | 1 <br> 1 | $\begin{aligned} & \text { AO2 } \\ & \text { 1.2.4 } \end{aligned}$ |
| 3 | A6 | The 8-bit binary number can be split into two 4-bit nibbles and the conversion to hexadecimal for each nibble written down. | 1 | $\begin{aligned} & \text { AO1 } \\ & \text { 1.2.4 } \end{aligned}$ |
| 4 | 11000010 | Each hexadecimal digit can be written down as a 4-bit nibble and joined together to make an 8-bit binary number. | 1 | $\begin{aligned} & \text { AO1 } \\ & \text { 1.2.4 } \end{aligned}$ |

