Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 7 Real-life graphs

Question	Answer	Extra information	Marks
7.1 (a)	The graph ends where she finishes the race, which is at 45 minutes.		1
7.1 (b)	10 minutes after the race starts		1
7.1 (c)	Krystyna accelerates at a steady rate for 15 minutes until she reaches $12 \mathrm{~km} / \mathrm{h}$ She then runs at a steady pace for 30 minutes, until stopping.		3
7.1 (d)	Distance travelled = area under graph. Split the area into a triangle, and a rectangle. 15 minutes $=\frac{1}{4}$ hour; 30 minutes $=\frac{1}{2}$ hour		3
7.2 (a)	From the graph, you can see that after 1.5 hours, Kai has travelled 30 km.	Distance for $11: 00$ to $12: 00$ Distance for $12: 00$ to $12: 30$ Correct total distance	1

Question	Answer	Extra information	Marks

Question	Answer	Extra information	Marks
7.4(c)	$\begin{aligned} & \frac{60}{6}=10 \\ & 8<10 \end{aligned}$ Plant B grows the slowest	$\begin{aligned} & 10 \\ & \text { Plant B } \end{aligned}$	1
7.5	The gradient of L_{1} is 3 , so the gradient of L_{2} is $-\frac{1}{3}$ It passes through $(-2,-1)$ so plug these coordinates into $y=-\frac{1}{3} x+c$ to get $-1=-\frac{1}{3}(-2)+c$ So $c=-1-\frac{2}{3}=-\frac{5}{3}$ And thus $y=-\frac{1}{3}(x+5)$ When $y=-3$, the equation becomes: $\begin{aligned} -3 & =-\frac{1}{3}(x+5) \\ 9 & =x+5 \\ x & =4 \end{aligned}$	Determines gradient of L_{1} Determines gradient of L_{2} Finds the equation of L_{2} Finds the x-coordinate	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
7.6	The gradients, in order, left to right, are $2,-\frac{2}{5},-\frac{1}{3}, \frac{5}{2}$ So, the $2^{\text {nd }}$ and $4^{\text {th }}$ lines are perpendicular: $5 y+2 x=10 \text { and }-2 x+\frac{4}{5} y=-10$	Finding the gradients of each line Identifying which two are negative reciprocals of each other	1

