Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 20 Surface area and volume

Question	Answer	Extra information	Marks
20.1 (a)	Volume $=\pi \times r^{2} h=\pi \times 4^{2} \times 11=176 \pi \mathrm{~cm}^{3}$	$\begin{aligned} & \pi \times 4^{2} \times 11 \\ & 176 \pi \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
20.1 (b)	$\begin{aligned} & \text { Curved surface area }=2 \times \pi \times 4 \times 11=88 \pi \\ & \text { Circular base area }=\pi \times 4^{2}=16 \pi \\ & \text { Total surface area }= \\ & 120 \pi=377 \mathrm{~cm}^{2}(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & 2 \times \pi \times 4 \times 11=88 \pi \\ & \pi \times 4^{2}=16 \pi \end{aligned}$ Adding all surfaces Correct answer, to 3 sf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
20.2	$\begin{aligned} & \text { Volume } 1=\text { Volume } 2 \\ & \frac{1}{2} \times 1.6 \times 1.8 \times 11=\frac{1}{2} \times 2.4 \times 4 \times h \\ & 15.84=4.8 h \\ & h=\frac{15.84}{4.8}=3.3 \\ & h=3.3 \mathrm{~cm} \end{aligned}$	Convert to all mm or all cm Equate volumes correctly Solve for h Correct answer, in appropriate units	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
20.3	Volume of cube $=2 \sqrt{2}=2^{1} \times 2^{\frac{1}{2}}=2^{\frac{3}{2}}$ Side length $=\sqrt[3]{V}=V^{\frac{1}{3}}=\left(2^{\frac{3}{2}}\right)^{\frac{1}{3}}=2^{\frac{3}{2} \times \frac{1}{3}}=2^{\frac{1}{2}}=\sqrt{2}$ Surface area of undrilled cube $=6 \times(\sqrt{2})^{2}=12$ Area of holes $=2 \times \pi r^{2}=2 \times \pi \times 0.25^{2}=\frac{\pi}{8}$ Surface area $=\left(12-\frac{\pi}{8}\right) \mathrm{cm}^{2}$	Finding the length of the cube Finding area of six faces less two circles Fully correct answer	1
20.4 (a)	Number of parts $=2+1=3$ $2400 \pi \div 3=800 \pi$ Volume of larger jug $=2 \times 800 \pi=1600 \pi$ $\pi \times 12^{2} \times h=1600 \pi$ $h=11.11 \ldots=11.1 \mathrm{~cm}$, to 3 sf	Calculating volume of larger jug Use of correct formula Attempt to find height Correct answer, to 3 sf	1 1
Volume of smaller jug $=800 \pi$ $h=r$ 20.4 (b) $\pi r^{2} \times r=800 \pi$ $r^{3}=800$ $r=9.28 \mathrm{~cm}$	Use of correct formula Attempt to find height by substituting $h=r$ Correct answer, to 3 sf	1	

Question	Answer	Extra information	Marks
20.5	$\begin{aligned} & \text { Area of base }=230 \times 230=52900 \mathrm{~m}^{2} \\ & \begin{aligned} \text { Volume }=\frac{1}{3} b h & =\frac{1}{3} \times 52900 \times 147 \\ & =2592100 \mathrm{~m}^{3} \\ & =2600000 \mathrm{~m}^{3}, \text { to } 2 \mathrm{sf} \end{aligned} \end{aligned}$	$\begin{aligned} & 230 \times 230=52900 \\ & \frac{1}{3} \times 52900 \times 7 \end{aligned}$ Answer correct to 2 sf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
20.6	$\begin{aligned} & \text { Surface area of sphere }=4 \pi r^{2}=400 \pi \\ & r^{2}=100 \\ & r=10 \end{aligned}$ $\text { The radius is } 10 \mathrm{~cm}$	$4 \pi r^{2}=400 \pi$ Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
20.7	$\text { Volume }=\frac{1}{2} \times \frac{4}{3} \pi r^{3}=\frac{2}{3} \pi \times 25^{3}=\frac{31250 \pi}{3}$ To 3 sf , this is $32700 \mathrm{~cm}^{3}$	$\begin{aligned} & \frac{1}{2} \times \frac{4}{3} \pi r^{3} \\ & \frac{31250 \pi}{3} \end{aligned}$ Answer correct to 3 sf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
20.8	$\begin{aligned} & \text { Volume of cone }=\frac{1}{3} \pi \times 6^{2} \times 15=180 \pi \\ & \text { Volume of hemisphere }=\frac{2}{3} \pi \times 6^{3}=144 \pi \\ & \text { Total volume }=324 \pi \mathrm{~cm}^{3} \end{aligned}$	Calculating volume of cone Calculating volume of hemisphere Correct final answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
20.9	$\begin{aligned} & 6 \times 1500=9000 \mathrm{ml}=9000 \mathrm{~cm}^{3} \\ & 100 \times 60 \times h=9000 \\ & h=1.5 \mathrm{~cm} \end{aligned}$	1 litre $=1000 \mathrm{ml}$ or $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$ used $6 \times$ volume in each jug $100 \times 60 \times h$ Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
20.10	$\text { Surface area }=\begin{aligned} 2 \pi r h+2 \pi r^{2} & =2 \pi \times 10 \times 40+2 \pi \times 10^{2} \\ & =1000 \pi \\ & =3141.6 \end{aligned}$ Greta would need $3141.6 \mathrm{~cm}^{3}$ of fabric. Greta has $3000 \mathrm{~cm}^{3}$ fabric. So, she does not have enough fabric.	Attempt to use formula 1000π or 3141.6 Correct comparison with $3000 \mathrm{~cm}^{3}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
20.11	$\begin{aligned} & \text { Volume of hemisphere }=\frac{2}{3} \pi r^{3}=\frac{2}{3} \pi \times 6^{3}=144 \pi \\ & \text { Volume of cone }=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \times 6^{2} h=12 \pi h \\ & \text { Total volume }=144 \pi+12 \pi h=276 \pi \\ & \qquad \begin{array}{l} 12 h=132 \\ \\ h=11 \mathrm{~cm} \end{array} \end{aligned}$	Correct method for volume of hemisphere or volume of cone Equates calculated total volume to 276π Correct method to find h Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
	$\frac{3}{8}$ of the parcels are medium		
	$\frac{5}{8}$ of the parcels are large		
	$\frac{1}{3}$ of the medium parcels are 1st class	1 mark for $\frac{3}{8}$ or $\frac{5}{8}$	1
$\frac{1}{3} \times \frac{3}{8}=\frac{1}{8}$	1 mark for $\frac{1}{3}$ or $\frac{3}{5}$	1	
$\frac{3}{5}$ of the large parcels are 1st class	1 mark for $\frac{1}{3} \times \frac{3}{8}$ or $\frac{3}{5} \times \frac{5}{8}$	1	
$\frac{3}{5} \times \frac{5}{8}=\frac{3}{8}$	1		
$\frac{1}{8}+\frac{3}{8}=\frac{1}{2}$		1	

Question	Answer	Extra information	Marks
20.13	$\begin{aligned} & \text { A Area }=\frac{60}{360} \times \pi(10)^{2}=16 \frac{2}{3} \pi \\ & \text { B Area }=\frac{75}{360} \times \pi(9)^{2}=16 \frac{7}{8} \pi \\ & \text { Compare fractions } \frac{2}{3} \text { and } \frac{7}{8} \\ & \frac{2}{3}=\frac{16}{24} \\ & \frac{7}{8}=\frac{21}{24} \end{aligned}$ Sector B has the greater area	Obtaining the sector area for one of the two Obtaining both sector areas Comparing the two, with the correct conclusion	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

