

Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 19 Area and perimeter (including circles)

Question	Answer	Extra information	Marks
19.1	5+12+13=30 $90 \div 30=3$, so one part of the ratio = 3 cm The side lengths are thus: $5\times 3=15$ cm $12\times 3=36$ cm $13\times 3=39$ cm The two perpendicular sides must be the two shorter sides of 15 cm and 36 cm So, the area = $\frac{1}{2}\times 15\times 36=270$ cm ²	Finding one part of the ratio = 3 cm Finding the lengths of the sides Finding the area	1 1 1
19.2	Area = πr^2 $\pi r^2 = 25\pi$ $r^2 = 25$ r = 5 Circumference = $2\pi r = 2\pi \times 5 = 10\pi$ cm	r = 5 Correct answer	1 1
19.3	Area = $\frac{\pi r^2}{2} = \frac{\pi \times 4.5^2}{2} = 31.8 \text{ cm}^2$ Perimeter = $\frac{1}{2}\pi \times 9 + 9 = 23.1 \text{ cm}$	Area correct to 1 dp Perimeter correct to 1 dp	1 1

Question	Answer	Extra information	Marks
19.4 (a)	60°	360 ÷ 6	1
19.4 (b)	Area = $\frac{1}{6} \times \pi \times 18^2 = 54\pi \text{ cm}^2$	Finding the area of the circle Dividing by 6	1 1
19.5	Diameter of largest semicircle = $19.3 + 4.9 = 24.2 \text{ m}$ Perimeter = $\frac{19.3\pi}{2} + \frac{4.9\pi}{2} + \frac{24.2\pi}{2} = 76.0 \text{ cm}$	Finding the circumference of one semicircle Correct formula for total perimeter Correct answer	1 1 1
19.6	Area of semicircle = $\frac{\pi r^2}{2}$ = $\frac{\pi \times 5.5^2}{2}$ = 47.516cm ² Height of trapezium = $10 - 5.5$ = 4.5 cm Area of trapezium = $\frac{1}{2} \times (11 + 7) \times 4.5$ = 40.5 cm Area of compound shape = 88.0 cm ²	Finding the area of the semicircle Finding the trapezium height Finding the trapezium area Correct answer	1 1 1
19.7	Triangle area = $\frac{1}{2} \times 12.8 \times 17.9$ Trapezium area = $\frac{1}{2} (x+9.4) \times 12.8$ Equate the areas and solve for x . $\frac{1}{2} \times 12.8 \times 17.9 = \frac{1}{2} (x+9.4) \times 12.8$ $17.9 = x+9.4$ $x = 8.5 \text{ cm}$	Finding the area formula of the triangle Finding the area formula for the trapezium Equating and solving	1 1 1

Question	Answer	Extra information	Marks
19.8	Shaded area = $(2 \times \text{ area of quarter circle})$ – area of the square: $2 \times \frac{1}{4} \pi \times 10^2 - 10^2$	Attempt to find the area of a quarter circle Add areas of quarter circles and subtract	1
	$=100\left(\frac{\pi}{2}-1\right) \text{cm}^2$	the area of the square Correct answer	1
19.9 (a)	Area = $\frac{50}{360} \times \pi r^2 = 98.2 \text{cm}^2$	$\pi \times 15^{2} \times \frac{50}{360}$ Correct answer, to 1 dp Correct units	1 1 1
19.9 (b)	Arc length = $2\pi r \times \frac{50}{360} = 2\pi \times 15 \times \frac{5}{36} = 13.1 \text{ cm}$ Perimeter = $13.1 + 15 + 15 = 43.1 \text{ cm}$	Find arc length Find perimeter Correct units	1 1 1
19.10	Perimeter = $2r$ + major arc length $90 = 2 \times 12 + \frac{360 - \theta}{360} \times \pi \times 24$ Rearrange and solve for θ to give $\theta = 44.873$ To the nearest degree, $\theta = 45^{\circ}$	Find major arc length Use total perimeter to set up equation 360 — angle Correct equation Correct answer	1 1 1 1

Question	Answer	Extra information	Marks
19.11	Let angle $BOA = \theta$ $\pi \times 17^{2} \times \frac{\theta}{360} = 60$ $\theta = 23.790$ Perimeter = $2\pi \times 17 \times \frac{23.790}{360} + 2 \times 17$ $= 41.058$ $= 41.1 \text{ cm, to 3 sf}$	Attempt to use area of sector formula Solve for θ Use perimeter formula with value of θ Correct answer	1 1 1 1
19.12	Width of rectangle = radius of each circle = 5 cm Area of rectangle = $5 \times 10 = 50 \text{ cm}^2$ Total area of quarter circles = $2 \times \frac{\pi(5)^2}{4} = \frac{25\pi}{2}$ Area of shaded region = $50 - \frac{25\pi}{2}$ So, $\frac{\text{Area of shaded region}}{\text{Area of rectangle}} = \frac{50 - \frac{25\pi}{2}}{50}$ = $1 - \frac{25\pi}{100}$ = $1 - \frac{\pi}{4}$ = $\frac{4 - \pi}{4}$	5 cm identified as width of rectangle / radius of circle Area of quarter circles and rectangle found Correct fraction (unsimplified) Fully correct	1 1 1

Question	Answer	Extra information	Marks
19.13	Area of triangle OAB = 25, so $\frac{1}{2} \times OA \times 5 = 25$ Therefore, $OA = 10$, and the coordinates of A are $(10, 0)$ Gradient of $l_1 = \frac{-5}{10} = -\frac{1}{2}$ Gradient of $l_2 = \frac{-1}{-\frac{1}{2}} = 2$, since the lines are perpendicular. $\frac{16-7}{7-a} = 2$ $\Rightarrow 9 = 14-2a$ $2a = 2$ $a = 2.5$	$\frac{1}{2} \times OA \times 5$ Gradient for l_1 Gradient for l_2 Final correct answer	1 1 1 1
19.14 (a)	$168 = 2^3 \times 3 \times 7$		3
19.14 (b)	$168 \times 441 = (2^{3} \times 3 \times 7) \times (3^{2} \times 7^{2})$ $= 2^{3} \times 3^{3} \times 7^{3}$ $= (2 \times 3 \times 7)^{3}$ $= 42^{3}$ Thus, $n = 42$	Use part a to set up 168×441 as a multiplication of the combined prime factors Correct answer	1