Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 19 Area and perimeter (including circles)

Question	Answer	Extra information	Marks
19.1	$5+12+13=30$ $90 \div 30=3$, so one part of the ratio $=3 \mathrm{~cm}$ The side lengths are thus: $5 \times 3=15 \mathrm{~cm}$ $12 \times 3=36 \mathrm{~cm}$ $13 \times 3=39 \mathrm{~cm}$ The two perpendicular sides must be the two shorter sides of 15 cm and 36 cm So, the area $=\frac{1}{2} \times 15 \times 36=270 \mathrm{~cm}^{2}$	Finding one part of the ratio $=3 \mathrm{~cm}$ Finding the lengths of the sides Finding the area	1 1
19.2	Area $=\pi r^{2}$ $\pi r^{2}=25 \pi$ $r^{2}=25$ $r=5$ Circumference $=2 \pi r=2 \pi \times 5=10 \pi \mathrm{~cm}$	$r=5$ Correct answer	
19.3	Area $=\frac{\pi r^{2}}{2}=\frac{\pi \times 4.5^{2}}{2}=31.8 \mathrm{~cm}^{2}$ Perimeter $=\frac{1}{2} \pi \times 9+9=23.1 \mathrm{~cm}^{2}$	Area correct to 1 dp Perimeter correct to 1 dp	1

Question	Answer	Extra information	Marks
19.4 (a)	60°	$360 \div 6$	1
19.4 (b)	$\text { Area }=\frac{1}{6} \times \pi \times 18^{2}=54 \pi \mathrm{~cm}^{2}$	Finding the area of the circle Dividing by 6	$\begin{array}{\|l\|} \hline 1 \\ 1 \end{array}$
19.5	Diameter of largest semicircle $\begin{aligned} & =19.3+4.9=24.2 \mathrm{~m} \\ & \text { Perimeter }=\frac{19.3 \pi}{2}+\frac{4.9 \pi}{2}+\frac{24.2 \pi}{2}=76.0 \mathrm{~cm} \end{aligned}$	Finding the circumference of one semicircle Correct formula for total perimeter Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
19.6	$\begin{aligned} & \text { Area of semicircle }=\frac{\pi r^{2}}{2}=\frac{\pi \times 5.5^{2}}{2}=47.516 \ldots \mathrm{~cm}^{2} \\ & \text { Height of trapezium }=10-5.5=4.5 \mathrm{~cm} \\ & \text { Area of trapezium }=\frac{1}{2} \times(11+7) \times 4.5=40.5 \mathrm{~cm} \\ & \text { Area of compound shape }=88.0 \mathrm{~cm}^{2} \\ & \hline \end{aligned}$	Finding the area of the semicircle Finding the trapezium height Finding the trapezium area Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
19.7	$\begin{aligned} & \text { Triangle area }=\frac{1}{2} \times 12.8 \times 17.9 \\ & \text { Trapezium area }=\frac{1}{2}(x+9.4) \times 12.8 \end{aligned}$ Equate the areas and solve for x. $\begin{aligned} & \frac{1}{2} \times 12.8 \times 17.9=\frac{1}{2}(x+9.4) \times 12.8 \\ & 17.9=x+9.4 \\ & x=8.5 \mathrm{~cm} \end{aligned}$	Finding the area formula of the triangle Finding the area formula for the trapezium Equating and solving	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
19.8	Shaded area $=(2 \times$ area of quarter circle $)-$ area of the square: $2 \times \frac{1}{4} \pi \times 10^{2}-10^{2}$ $=100\left(\frac{\pi}{2}-1\right) \mathrm{cm}^{2}$	Attempt to find the area of a quarter circle Add areas of quarter circles and subtract the area of the square Correct answer	1
19.9 (a)	Area $=\frac{50}{360} \times \pi r^{2}=98.2 \mathrm{~cm}^{2}$	$\pi \times 15^{2} \times \frac{50}{360}$ Correct answer, to 1 dp Correct units	1

Question	Answer	Extra information	Marks
19.11	Let angle $B O A=\theta$ $\begin{aligned} & \pi \times 17^{2} \times \frac{\theta}{360}=60 \\ & \theta=23.790 \ldots \end{aligned}$ Perimeter = $\begin{aligned} & 2 \pi \times 17 \times \frac{23.790 \ldots}{360}+2 \times 17 \\ & =41.058 \ldots \\ & =41.1 \mathrm{~cm}, \text { to } 3 \mathrm{sf} \end{aligned}$	Attempt to use area of sector formula Solve for θ Use perimeter formula with value of θ Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
19.12	Width of rectangle $=$ radius of each circle $=5 \mathrm{~cm}$ Area of rectangle $=5 \times 10=50 \mathrm{~cm}^{2}$ Total area of quarter circles $=2 \times \frac{\pi(5)^{2}}{4}=\frac{25 \pi}{2}$ Area of shaded region $=50-\frac{25 \pi}{2}$ So, $\begin{aligned} \frac{\text { Area of shadedregion }}{\text { Area of rectangle }} & =\frac{50-\frac{25 \pi}{2}}{50} \\ & =1-\frac{25 \pi}{100} \\ & =1-\frac{\pi}{4} \\ & =\frac{4-\pi}{4} \end{aligned}$	5 cm identified as width of rectangle / radius of circle Area of quarter circles and rectangle found Correct fraction (unsimplified) Fully correct	1 1

Question	Answer	Extra information	Marks
19.13	Area of triangle $\mathrm{OAB}=25$, so $\frac{1}{2} \times O A \times 5=25$ Therefore, $O A=10$, and the coordinates of A are $(10,0)$ Gradient of $l_{1}=\frac{-5}{10}=-\frac{1}{2}$ Gradient of $l_{2}=\frac{-1}{-\frac{1}{2}}=2$, since the lines are perpendicular. $\begin{aligned} & \frac{16-7}{7-a}=2 \\ & \Rightarrow 9=14-2 a \\ & 2 a=2 \\ & a=2.5 \end{aligned}$	$\frac{1}{2} \times O A \times 5$ Gradient for l_{1} Gradient for l_{2} Final correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
19.14 (a)	$168=2^{3} \times 3 \times 7$		3
19.14 (b)	$\begin{aligned} 168 \times 441 & =\left(2^{3} \times 3 \times 7\right) \times\left(3^{2} \times 7^{2}\right) \\ & =2^{3} \times 3^{3} \times 7^{3} \\ & =(2 \times 3 \times 7)^{3} \\ & =42^{3} \end{aligned}$ Thus, $n=42$	Use part a to set up 168×441 as a multiplication of the combined prime factors Correct answer	1 1

