

Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 18 Polygons, angles, and parallel lines

Question	Answer	Extra information	Marks
18.1	Angle $AFG = 75^{\circ}$ (opposite angles) Angle AGF = 80° (adjacent angles in a parallelogram) Angle GAF (x) = $180 - 75 - 80 = 25^{\circ}$		1 1 1
18.2 (a)	<i>x</i> = 3		1
18.2 (b)	1 + 3 + 1 + 3 = 8 parts The angles in a parallelogram add up to 360° . $360^{\circ} \div 8 = 45^{\circ}$ $3 \times 45^{\circ} = 135^{\circ}$ Two of the angles are 45° and two of the angles are 135°	$360 \div 8 (= 45)$ Fully correct answer	1 1
18.3	Angle $x = 136^{\circ} - 4c$ (Corresponding angles are equal.) $3c + 63^{\circ} + 136^{\circ} - 4c = 180^{\circ}$ (Angles on a straight line sum to 180°) $199^{\circ} - c = 180^{\circ} \Rightarrow c = 19^{\circ}$ $y = 136^{\circ} - 4 \times 19^{\circ} = 60^{\circ}$ (Alternate angles are equal.) $d = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$ (Angles on a straight line sum to 180°)	3c + 63 + 136 - 4c = 180 Solving equation d = 30 Geometric reasons given.	1 1 1 1

OXFORD REVISE

Question	Answer	Extra information	Marks
18.4	$151^{\circ} - 3x + x + y + 51^{\circ} = 180^{\circ}$ (Angles on a straight line sum to 180°) $x + 53^{\circ} + 2y + 36^{\circ} = 180^{\circ}$ (Angles on a straight line sum to 180°) Simplifying both equations, 22 = 2x - y (1), $91 = x + 2y$ (2) $2 \times (1) + (2)$: $135 = 5x$; $x = 27^{\circ}$ Substituting into (2), $91 = 27 + 2y$; $2y = 64$; $y = 32^{\circ}$ Substituting these values into each slice size, the angles are 70° , 110° , 100° and 80° . The largest slice size is 110°	151 - 3x + x + y + 51 = 180 or $x + 53 + 2y+ 36 = 180 with reason (angles on astraight line sum to 180^{\circ})Attempt to solveCorrect answer for both x and y110^{\circ} as final answer.$	1 1 1 1
18.5	Angles on a straight line add up to 180° . Angle $ABC = 180^{\circ} - 95^{\circ} = 85^{\circ}$ Opposite angles of a rhombus are equal. Therefore, $x = 85^{\circ}$	Each correct reason stated Correct answer of 85°	1 1
18.6	Angle $EAD = 44^{\circ}$ (alternate angles) Angle $FDE = 180^{\circ} - 90^{\circ} - 44^{\circ} = 46^{\circ}$ (Angles in triangle add up to 180°)	Angle $EAD = 44$ 180 - 90 - angle EAD Correct final answer.	1 1 1
18.7	Angle STU = angle $PQR = 60^{\circ}$ (equilateral triangles) $t = \frac{360 - (60 + 60)}{2} = 120^{\circ}$ (Opposite angles of a parallelogram are equal and angles in a quadrilateral sum to 360°.)	2 marks for $t = 120$ or 1 mark for either <i>STU</i> or <i>PQR</i> = 60; 1 mark for any correct geometrical reason; 1 mark for fully correct geometrical reasons.	3

OXFORD REVISE

Question	Answer	Extra information	Marks
	$x + y = 2x - y + 99^{\circ} \text{ (from kite symmetry)}$ $x + y + 2x - y + 99^{\circ} + y + 25 + x - 25 = 360^{\circ}$ (Angles in a quadrilateral add up to 360°.)	x + y = 2x - y + 99 or $x + y + 2x - y + 99 + y + 25 + x - 25 =$ 360	1
18.8	Simplifying both equations, -x + 2y = 99 (1), 4x + y = 261 (2) $4 \times (1) + (2): 9y = 657; y = 73^{\circ}$ Substituting into (2), $4x + 73 = 261; 4x = 188;$ $x = 47^{\circ}$	Attempt to eliminate either <i>x</i> or <i>y</i> and solve	1
		Correct answer for x or y Correct answer for both x and y.	1
18.9	$360^{\circ} \div 60^{\circ} = 6$ The shape is a (regular) hexagon.	$360 \div 60 = 6$ or for stating that exterior angles add to 360° Hexagon	1 1
18.10	$(n-2) \times 180^\circ = 1620^\circ$ $n = 1620 \div 180 + 2 = 11$ The polygon has 11 sides.	$(n-2) \times 180 = 1620$ 11	1 1
18.11	$(8-2) \times 180^\circ = 1080^\circ$ $1080^\circ \div 8 = 135^\circ$ (= angle in octagon) $x = 360^\circ - 60^\circ$ (equilateral triangle) -90° (square) -135° (octagon) = 75° (Angles around a point add up to 360°)	Method to find interior angle of octagon 135 Subtracting your 3 angles from 360 Correct final answer of 75°. If no marks scored, score 1 mark for 60 (equilateral triangle) or 90 (square).	1 1 1 1
18.12	Exterior angle = $180^{\circ} - 80^{\circ} = 100^{\circ}$ $360^{\circ} \div 100^{\circ} = 3.6$ A polygon cannot have 3.6 sides, so Sophia is correct.	$\begin{array}{l} 180-80 \ (=100^\circ) \\ 360 \div 100 \ (=3.6^\circ) \\ \text{Concluding that Sophia is correct with full} \\ explanation. \end{array}$	1 1 1

Question	Answer	Extra information	Marks
18.13	Angle $BFE = 50^{\circ}$ (Alternate angles are equal) Angle $FHE = 100^{\circ}$ (Angles in a triangle sum to 180°) Angle $FHI = 80^{\circ}$ (Angles on a straight line sum to 180°) $x = 90^{\circ}$ (Angles in a triangle sum to 180°)	1 correct angle with a correct reason 2 correct angles with correct reasons Fully correct answer	1 1 1
18.14	Sum of interior angles = $(6 - 2) \times 180 = 720^{\circ}$ Let angle <i>FED</i> = <i>x</i> Then angle <i>BCD</i> = 2 <i>x</i> $141 + 127 + 90 + 134 + 2x + x = 720^{\circ}$ $3x = 228^{\circ}$ $x = 76^{\circ}$ Angle <i>FED</i> = 76°	Method for sum of interior angles (= 720°) Use of <i>BCD</i> = <i>FED</i> (e.g. algebraically) Correct equation Correct method of solution Correct answer	1 1 1 1 1
18.15	Sum of interior angles = $(5-2) \times 180 (= 540^{\circ})$ Angle $ABC = 1.5 \times 82 (= 123^{\circ})$ So angle $AED = 123^{\circ}$ (by symmetry) Let angle $BCD = x$ Then angle $CDE = x$ (by symmetry) $82 + 123 + 123 + x + x = 540^{\circ}$ $2x = 212^{\circ}$ $x = 106^{\circ}$ Angle $BCD = 106^{\circ}$	Method for sum of interior angles (= 540°) $1.5 \times 82 \ (= 123^{\circ})$ Symmetry used at least once (e.g. AED = 123°) Correct equation Correct method of solution Correct answer	1 1 1 1 1 1

Question	Answer	Extra information	Marks
18.16	$4^{2} \times 8^{2} = \frac{1}{2^{x}}$ $(2^{2})^{2} \times (2^{3})^{2} = \frac{1}{2^{x}}$	Convert 4 and 8 to powers of 2 Use rules of exponents to express each as the number 2 raised to a single power	1
	$2^4 \times 2^6 = 2^{-x}$	Write $\frac{1}{2^x}$ as 2^{-x}	1
	$2^{10} = 2^{-x}$ x = -10	Equate the powers to get the final answer	1

Question	Answer	Extra information	Marks
18.17	$y \propto \sqrt{2x}$ $y = \frac{k}{\sqrt{2x}}$ $\frac{1}{4} = \frac{k}{\sqrt{64}}$ $\frac{1}{4} = \frac{k}{8}$ $k = 2$ $3\sqrt{2} = \frac{2}{\sqrt{2x}}$ $3\sqrt{2} \times \sqrt{2x} = 2$ $3\sqrt{2} \times \sqrt{2} \times \sqrt{x} = 2$ $3 \times 2 \times \sqrt{x} = 2$ $\sqrt{x} = \frac{1}{3}$ $x = \frac{1}{9}$	Write the relationship using a constant of proportionality Solve for the constant of proportionality Use this with the value $y = 3\sqrt{2}$ Obtaining $\sqrt{x} = \frac{1}{3}$ Fully correct answer	1 1 1 1 1