Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 17 Compound measures and multiplicative reasoning

Question	Answer	Extra information	Marks
17.1	$\begin{aligned} & \text { Rate }=\frac{\text { Volume }}{\text { time }} \\ & 20=\frac{2400}{t} \\ & t=\frac{2400}{20} \\ & t=120 \\ & \text { Time }=120 \text { seconds } \end{aligned}$	$2400 \div 20$ Correct answer, including units	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.2	$\text { Density }=\frac{\text { mass }}{\text { volume }}=\frac{38700}{5}=7740 \mathrm{~kg} / \mathrm{m}^{3}$	Convert g to kg Use of the formula for density Correct answer	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \end{array}$
17.3 (a)	$\begin{aligned} & \text { Speed }=\frac{\text { distance }}{\text { time }} \\ & 47=\frac{5.64}{t} \\ & t=\frac{5.64}{47}=0.12 \text { hours } \end{aligned}$ 0.12 hours $=7.2$ minutes 0.2 minutes $=12$ seconds Therefore, time is 7 minutes and 12 seconds	Convert to consistent units Attempt to use formula to find the time 0.12 hours Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
17.3 (b)	0.78 m per minute $=0.0468 \mathrm{~km} / \mathrm{h}$ So, the snail is slightly faster	Convert to consistent units 0.78 m per minute $=0.0468 \mathrm{~km} / \mathrm{h}$ Correct conclusion	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
17.4	Dogs Love Bach: 9 kg for $£ 12.99$ Unit cost $=£ 1.44333 \ldots$ for 1 kg Woof \& Ready: 8 kg for $£ 11.00$ Unit cost $=£ 1.375$ for 1 kg , which is the better value	At least one of dividing costs by 9 or 8 $£ 1.44 \ldots$ or $£ 1.375$ Comparison of correct answers with correct conclusion (i.e. Woof \& Ready is cheaper)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17.5	France: $58800 \div 12=4900$ euros per acre Argentina: $4520000 \div 64.19=70415.95264$ euros $70415.95264 \div 15=4694.39 \ldots$ euros per acre Lower cost per acre in Argentina	$\begin{array}{\|l\|} \hline 58800 \div 12(=4900) \\ 4520000 \div 64.19(=70415.9 \ldots) \\ 4900 \text { and } 4694(.3 \ldots) \text { with correct } \\ \text { conclusion } \\ \text { (i.e. Argentina is cheaper) } \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17.6 (a)	$\begin{aligned} & \hline 12 \times 6=72 \text { painter days' } \\ & 72 \div 18=4 \text { days } \\ & \hline \end{aligned}$	$12 \times 6 \div 18$, or equivalent Correct answer	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$
17.6 (b)	$72 \div 3=24$ painters	$12 \times 6 \div 3$, or equivalent Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$

Question	Answer	Extra information	Marks
17.6 (c)		Correct shape Graph approaches (but does not touch) both sets of axes.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.7	$\begin{aligned} & T=\frac{k}{W} \\ & 5=\frac{k}{4} \\ & \Rightarrow k=20 \\ & T=\frac{20}{8}=2.5 \end{aligned}$	Setting up a formula to represent the inverse relationship Correct answer	
17.8 (a)	$\begin{aligned} & p=k q \\ & \Rightarrow k=12.5 \\ & p=12.5 q \end{aligned}$	Use given values to find k. Write formula for p in terms of q, using this k	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.8 (b)	$\begin{aligned} & 40=12.5 q \\ & q=\frac{40}{12.5}=3.2 \end{aligned}$	Substituting $p=40$ into formula from part a Correct answer	

Question	Answer	Extra information	Marks
17.9	f must be inversely proportional to h^{2} : $\begin{aligned} & f=\frac{k}{h^{2}} \Rightarrow 6=\frac{k}{0.5^{2}} \Rightarrow k=\frac{3}{2} \\ & \Rightarrow f=\frac{3}{2 h^{2}} \end{aligned}$	1 mark for describing the proportionality of f and h. 1 mark for $f=\frac{k}{h^{2}}$ or equivalent 1 mark for correct value of k 1 mark for correct final answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
17.10 (a)	$7 \times 2=14$ "builder days" 4 workers means $14 \div 4=3.5$ days	Finding "builder days" or equivalent Correct answer	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
17.10 (b)	Assumption is that all workers work at the exact same rate		1
17.11	$\begin{aligned} & \text { Original density }=\frac{30}{100}=0.3 \mathrm{~kg} / \mathrm{cm}^{3} \\ & \text { New density }=\frac{70}{140}=0.5 \mathrm{~kg} / \mathrm{cm}^{3} \\ & \% \text { increase }=\frac{0.5-0.3}{0.3} \times 100 \%=66.6 \% \end{aligned}$ Pat is correct	Finding original and new density Obtaining a \% increase	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

OXFORD REVISE

Question	Answer	Extra information	Marks
17.12	$\begin{aligned} & f=k \sqrt{g} \\ & 2=k \sqrt{324} \\ & k=\frac{1}{9} \\ & \Rightarrow f=\frac{\sqrt{g}}{9} \end{aligned}$ Now, $\begin{aligned} & g=\frac{K}{h^{2}} \\ & 225=\frac{K}{0.2^{2}} \\ & K=9 \\ & \Rightarrow g=\frac{9}{h^{2}} \\ & f^{2}=\frac{g}{81}=\frac{1}{81}\left(\frac{9}{h^{2}}\right)=\frac{1}{9 h^{2}} \\ & f=\sqrt{\frac{1}{9 h^{2}}}=\frac{1}{3 h} \end{aligned}$	$\begin{aligned} & f=k \sqrt{g} \\ & g=\frac{K}{h^{2}} \end{aligned}$ Substitutes values of f and g to find k, or values of g and h to find K. k or K correct Correct answer	1

Question	Answer	Extra information	Marks
17.13	$\begin{aligned} & v=\frac{k}{w^{2}} \\ & 2=\frac{k}{9 x^{2}} \\ & k=18 x^{2} \\ & \Rightarrow v=\frac{18 x^{2}}{w^{2}} \end{aligned}$ When $w=5 x$: $v=\frac{18 x^{2}}{25 x^{2}}=\frac{18}{25}=0.72$	$v=\frac{k}{w^{2}}$ Substituting $v=2$ and $w=3 \mathrm{x}$ correctly Complete method leading to correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17.14	$1.98 \mathrm{~km}=1980 \mathrm{~m}$ Lower Bound for distance $=1975 \mathrm{~m}$ Upper Bound for distance $=1985 \mathrm{~m}$ Lower Bound for time $=57.5 \mathrm{~s}$ Upper Bound for time $=62.5 \mathrm{~s}$ Upper Bound for speed $=\frac{1985}{57.5}=34.521 \ldots$ Lower Bound for speed $=\frac{1975}{62.5}=31.6$ Both round to $30 \mathrm{~m} / \mathrm{s}$ to 1 sf	$\begin{aligned} & 1975 \text { or } 57.5 \\ & 1985 \text { or } 62.5 \end{aligned}$ Correct method for UB of speed of LB of speed $34.5217 \ldots$ and 31.6 correct Correct answer with explanation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
17.15	Egg without shell $=44.5 \mathrm{~g}$ 11% decrease means a multiplier of 0.89 Egg with shell $\times 0.89=44.5$ Therefore, egg with shell $=\frac{44.5}{0.89}=50 \mathrm{~g}$	Correct multiplier for 11% decrease Sets up correct relationship between shell on and off Correct answer	1 1
17.16	The ratio of their money is originally $2: 1$ So, the actual amount of money that each person has can be represented as $2 x$ and $1 x$, respectively. They each pay $£ 9$ for lunch, so they now have $2 x-9$ and $x-9$ pounds, respectively, and this is in the ratio of $5: 2$. Hence: $\frac{2 x-9}{x-9}=\frac{5}{2}$ $5 x-45=4 x-18$ $x=27$	Letting x and $2 x$ represent the original amounts Writing $x-9$ and $2 x-9$ as the current amounts Setting up the ratio equation $\frac{2 x-9}{x-9}=\frac{5}{2}$ That means Ted started with $£ 27$, and Fred started with $£ 54$	1

