

Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 14 Non-linear real-life graphs

Question	Answer	Extra information	Marks
14.1 (a)	 Area of trapezium $1=\frac{1}{2}(8+7) \times 1=7.5$ Area of trapezium $2=\frac{1}{2}(7+0) \times 1=3.5$ Total area $=7.5+3.5=11$	Finding the correct area for one trapezium Finding the correct area for two trapeziums Correct answer	1 1 1

Question	Answer	Extra information	Marks
14.1 (b)	 Area of trapezium $1=\frac{1}{2}(8+7.9) \times 0.5=3.975$ Area of trapezium $2=\frac{1}{2}(7.9+7) \times 0.5=3.725$ Area of trapezium $3=\frac{1}{2}(7+4.6) \times 0.5=2.9$ Area of trapezium $4=\frac{1}{2}(4.6+0) \times 0.5=1.15$ Total area $=3.975+3.725+2.9+1.15=11.75$	Finding the correct area for one trapezium Finding the correct area for the four trapeziums Correct answer	1 1 1

Question	Answer	Extra information	Marks
14.1 (c)	The trapeziums used for parts (a) and (b) all sit under the curve, and therefore underestimate the area. Splitting the area into 4 sections rather than 2 produces a closer approximation, therefore is less of an underestimate/gives a larger answer.	Correct explanation	1
14.1 (d)	The area under the curve represents the distance travelled by the particle in metres.	Correct answer, mentioning distance	1

Question	Answer	Extra information	Marks
14.2 (a)	 Area of trapezium $1=\frac{1}{2}(10+9.9) \times 1=9.95$ Area of trapezium $2=\frac{1}{2}(9.9+8.6) \times 1=9.25$ Area of trapezium $3=\frac{1}{2}(8.6+5.5) \times 1=7.05$ Total area (total distance) $=26.25 \mathrm{~m}$	Finding the correct area for one trapezium Finding the correct area for the three trapeziums Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
14.2 (b) (i)	 Area of trapezium $1=\frac{1}{2}(5.5+2.8) \times 1=4.15$ Area of trapezium $2=\frac{1}{2}(2.8+1.4) \times 1=2.1$ Area of trapezium $3=\frac{1}{2}(1.4+0.7) \times 1=1.05$ Total area (total distance) $=7.3 \mathrm{~m}$	Finding the correct area for one trapezium Finding the correct area for the three trapeziums Correct answer	1

Question	Answer	Extra information	Marks
14.2 (b) (ii)	This is an overestimate because the trapeziums lie slightly above the curve	overestimate, with reason	1
14.3 (a)	 Acceleration $=$ gradient of the tangent at a point When $t=5$, gradient $=\frac{3}{4}=0.75$ The acceleration at $t=5$ is $0.75 \mathrm{~m} / \mathrm{s}^{2}$	Drawing a line with the correct slope at the point on the curve where $t=5$ Attempt to find gradient here Answer between 0.7 and 0.8	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
14.3 (b) (i)	Width of each strip $=2.5$ Area of trapezium $1=\frac{1}{2}(9.1+9.0) \times 2.5=22.625$ Area of trapezium $2=\frac{1}{2}(9.0+7.2) \times 2.5=20.25$ Total area $=43$	Using strips of width 2.5 Using correct formula for the area of either trapezium Finding the area of each trapezium Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
14.3 (b) (ii)	It represents the distance travelled, in metres, between 15 and 20 seconds.	"Distance" mentioned	1

Question	Answer	Extra information	Marks
14.4 (a)	Weeks 3, 5, 7 and 9		3
14.4 (b)	9 and 12	The slope is the least steep here	1
14.4 (c)	2 cm growth in 2 weeks means 1 cm per week		1
14.5	Left to right in table: B, A, C	One correct All correct	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$
14.6 (a)	 Average speed $=$ gradient of the chord $=\frac{20-0}{2-0}=10 \mathrm{~m} / \mathrm{s}$	Chord drawn, or an attempt to find the gradient of the chord Correct answer	

Question	Answer	Extra information	Marks
14.6 (b)	$\text { Speed }=\text { gradient of the tangent } \approx \frac{10-0}{1.5-0.5}=10 \mathrm{~m} / \mathrm{s}$	Tangent drawn Method to find the gradient of the tangent Answer between 9.5 and 10.5	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
14.7 (a)	 Average acceleration $=$ gradient of chord $=\frac{215-0}{0.5-0}=430 \mathrm{~km} / \mathrm{h}^{2}$	Chord drawn, or an attempt at the gradient Correct answer	
14.7 (b)	The train starts to slow down (decelerate)		1
14.7 (c)	$\text { Acceleration }=\text { gradient of tangent } \approx \frac{190-290}{2.5-1.5}=-100$ This means the train is decelerating at $100 \mathrm{~km} / \mathrm{h}^{2}$	Tangent drawn Method to find the gradient of the tangent Answer between 95 and 105	$\begin{array}{\|l} \hline 1 \\ 1 \\ 1 \end{array}$

Question	Answer	Extra information	Marks
14.8	All exponential graphs of the form $y=k^{x}$, where k is a positive constant, pass through the point with coordinates $\mathbf{(0 , 1)}$. When $k>1$, the graph will demonstrate exponential growth, and when $k<1$ it demonstrates exponential decay.	1 mark for each	3
14.9	$(9,14)$		1

