Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 13 Cubic graphs, reciprocal graphs, exponential graphs, transformation of graphs

Question	Answer	Extra information	Marks
13.1 (a)	The inverse of $\mathrm{f}(x)$ is written as $\mathrm{f}^{-1}(x)$, but this does not mean " 1 over $\mathrm{f}(x)$ ". The " -1 " superscript on the function $\mathrm{f}(x)$ means the function that "undoes" $\mathrm{f}(x)$; it is not used like a power or exponent.		1
	$y=\frac{1-x}{2 x+4}$ Swap x and y and then solve for $y:$ $x=\frac{1-y}{2 y+4}$ $2 x y+4 x=1-y$ $2 x y+y=1-4 x$ $y(2 x+1)=1-4 x$ $y=\frac{1-4 x}{2 x+1}$	Swap x and y Rearrange algebraically Correct answer	1

Question	Answer	Extra information	Marks
13.2	$\begin{aligned} & y=a b^{x} \\ & 10=a b^{1} \\ & 0.4=a b^{-1} \end{aligned}$ Divide to eliminate a : $\begin{aligned} & \frac{10}{0.4}=\frac{b}{b^{-1}} \\ & 25=b^{2} \\ & b=5 \end{aligned}$ Use one point and $b=5$ to find a : $\begin{aligned} & 10=a \times 5^{1} \\ & a=2 \end{aligned}$	Set up equations and eliminate a Solve for b Solve for a	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
13.3	$\begin{array}{\|l\|} \hline A=\text { Reciprocal } \\ B=\text { Cubic } \\ C=\text { Exponential } \\ D \text { is Trigonometric } \\ \hline \end{array}$	1 mark for two correct 2 marks for all correct	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
13.4	Exponential curve sketched passing through (0,1) Correctly shown to approach but never equal 0 as $x \rightarrow-\infty$	1 mark for point at $(0,1)$, labelled as such 1 mark for $y=0$ asymptote 1 mark for correct shape as x gets large	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ \hline \end{array}$
13.5	$(5,10)$	1 mark for x or y correct, as long as work shows how it was calculated	$\begin{array}{\|l\|} \hline 1 \\ 1 \end{array}$
13.6	Quadratic curve sketched that clearly shows the graph of $\mathrm{f}(x)$ being compressed in the x direction. Turning point remains where $x=-4$		2
13.7	$y=-\mathrm{f}(x)$		1

Question	Answer	Extra information	Marks
13.8		General shape correct Passing through $(0,1)$ Approaching, but not definitely not touching, the x-axis as x increases	1
13.9 (a)	$y=x^{2}-4 x+1$ Complete the square: $\begin{aligned} y & =(x-2)^{2}-4+1 \\ & =(x-2)^{2}-3 \end{aligned}$ Minimum point on the curve occurs when $x=2$, which is at $(2,-3)$	Attempting to complete the square Correct answer	1

Question	Answer	Extra information	Marks
	$5 x+y=10$ $10 x y=-48$ Rearrange second equation: $y=\frac{-48}{10 x}$ Substitute this in the first equation and rearrange to form a quadratic: $5 x+\frac{-48}{10 x}=10$ $50 x^{2}-48=100 x$ $50 x^{2}-100 x-48=0$ $25 x^{2}-50 x-24=0$ Use the quadratic formula or otherwise solve for $x:$ $x=-0.4$ or $x=2.4$ $y=12$ or $y=-2$ Solutions are $(-0.4,12)$ and $(2.4,-2)$	Attempt to rearrange one of the equations Substitute to eliminate one variable Solve the quadratic Find x or y values Find the two coordinates	1
13.11	The difference between 4 and 25 is $25-4=21$ There are three "jumps" between 4 and 25, so each jump is 21 3 Thus, the sequence starts: $4,11,18,25$ Continuing the sequence with the common difference of 7 gives $32,39,46,53,60,67$ 61 is not a term in this sequence	1 Using the 1 st and 4th terms to extract the common difference. Use the common difference to fill in the sequence Continuing the sequence beyond 61 Correct answer, demonstrated	1

