

Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 12 Sequences

Question	Answer	Extra information	Marks
	First 4 terms: 7, 12, 17, 22		1
	Term-to-term rule: Add 5		1
12.1 (a)	Seventh term: 37		1
	Hundredth term: 502		1
	Type of sequence: Arithmetic		1
	First 4 terms: 10, 20, 40, 80		1
	Term-to-term rule: Multiply by 2		1
12.1 (b)	Seventh term: 640		1
	Hundredth term: $6.3 imes10^{30}$ (to 2 sf)		1
	Type of sequence: Geometric		1
	First 4 terms: -1, 0, 3, 8		1
	Term-to-term rule: Add 1, 3, 5, (add $2n-1$)		1
12.1 (c)	Seventh term: 35		1
	Hundredth term: 9800		1
	Type of sequence: Quadratic		1
	Term-to-term rule: Add previous 2 terms		1
12.1 (d)	Seventh term: 13		1
	Type of sequence: Fibonacci		1
12.2 (a)	$8n + 3 = 51; 8n = 48; n = 48 \div 8 = 6$	Writing the equation	1
12.2 (a)	The 6th term is 51	Correct answer.	1
12.2 (b)	8n + 3 = 64; 8n = 61	Writing the equation	1
12.2 (0)	61 is not divisible by 8, so 64 is not in the sequence.	Correct answer.	1

ISBN 9781382039857

Question	Answer	Extra information	Marks
12.2 (c)	8n + 3 > 100; 8n > 97; > $97 \div 8 (= 12.125)$ This is the 13th term. The 13th term is $8 \times 13 + 3 = 107$	Writing the inequality 13th term Correct answer	1 1 1
12.3 (a)	When n = 4, $n^2 - 30 = 4^2 - 30$ = 16 - 30 = -14	Substituting in 4 Correct answer	1 1
12.3 (b)	$n^2 - 30 = 114$, so $n^2 = 144$. Since 144 is a square number, and n = 12, this is in the sequence.	Writing the equation Correct answer.	1 1
12.4 (a) (i)	With a Fibonacci sequence, you add together the previous two terms. The sequence begins: m, n, m+n, m+2n, 2m+3n, 3m+5n, 5m+8n, The fourth term is $m + 2n$		1
12.4 (a) (ii)	The seventh term is $5m + 8n$	Finding the fifth and sixth terms Correct answer.	1 1
12.4 (b)	m = 3 The gap between the 1st and 3rd is: (m + n) - m = n so $n = 5$ The 8th term is $8m + 13n = 8 \times 3 + 13 \times 5 = 89$	Method for finding the 8th term Correct answer	1 1

Question	Answer				Extra information		Marks
	Sequence a 17, 23, 29, 35 b -1, 2, 5, 8	Term-to- term rule Add 6 Add 3	<i>n</i> th term 6 <i>n</i> + 11 3 <i>n</i> - 4	Tenth term 71 26			
12.5	$\begin{array}{c c} c & 4, 1, -2, \\ & -5 \\ \hline d & 20, 15, \\ & 10, 5 \\ \hline e & 3, 3.5, 4, \\ & 4.5 \\ \end{array}$	Subtract 3 Subtract 5 Add 0.5	$ \begin{array}{r} -3n + 7 \text{ or} \\ 7 - 3n \\ \hline -5n + 25 \text{ or} \\ 25 - 5n \\ \hline 0.5n + 2.5 \\ \end{array} $	-23 -25 7.5			15
12.6	The sequence b Since it is arithm each time. In tw to-term rule is 'a This makes the	egins 5,, 1 netic, it increa vo jumps, it inc add 3' and the nth term $3n +$	1, ses by the sam creases by 6, sc e sequence is 5, 2	e amount) the term- , 8, 11,	Identifying the sequence <i>n</i> th term. 50th & 60th term		1 1 1
12.7	The sequence 1: has <i>n</i> th term 15 The 50th term is and the 60th ter The sum of thes (-135) + (-165)	2, 9, 6, 3, -3n s $15 - 3 \times 50 =$ rm is $15 - 3 \times$ the terms is = -300	= -135 60 = -165		Finding the <i>n</i> th term Finding the 50th and 60th te Correct answer.	erms	1 1 1
12.8 (a)	The next term w	vill be $\frac{13}{6}$					1
12.8 (b)	The <i>n</i> th term is	given by $\frac{2n+n}{n}$	1				3

Question	Answer	Extra information	Marks
12.8 (c)	$\frac{2 \times 6 + 1}{6} \times \frac{2 \times 9 + 1}{9} = \frac{13}{6} \times \frac{19}{9}$ $= \frac{247}{54}$		2
12.9 (a)	5, 8, 13, 20, 29	At most 1 error Extra mark if all correct	1 1
12.9 (b)	1, 12, 27, 46, 69	At most 1 error Extra mark if all correct	1 1
12.9 (c)	44, 61, 68, 65, 52	At most 1 error Extra mark if all correct	1 1
12.10 (a)	n^2		1
12.10 (b)	$n^2 - 1$		1
12.10 (c)	3 <i>n</i> ²		1
12.11 (a)	5, 8, 13, 20, The difference between the terms forms an arithmetic sequence: 3, 5, 7, 9, 11, The next two terms are 29 and 40	1 for each correct term	2
12.11 (b)	 -2, 5, 14, 25, The difference between the terms forms an arithmetic sequence: 7, 9, 11, 13, 15, The next terms are 38 and 53 	1 for each correct term	2

Question	Answer					Extra information	Marks
	$n^2 + 2n + 2 = 4$	$50 \Rightarrow n^2 +$	2n - 48 =	0		Writing the <i>n</i> th term equal to 50	1
	$\Rightarrow (n+8)(n-$	(6) = 0				Rearranging to 0 and attempting to solve the	1
12.12	So, the solutio	ons are $n =$	-8 or n =	6		quadratic by factorising (or equivalent method of	
	Since <i>n</i> is a po	sitive num	ber, $n = 6$			solution)	
	So, the 6th ter	rm is 50				Correct answer	1
	Sequence:	10, 12,	16, 22				
	1st difference	: 2 4	4 6				
	2nd difference	e: 2	2				
	2nd difference	e is 2, so in	the quad	ratic			
	$an^2 + bn + c$						
	$a = 2 \div 2 = 1$					Finding $a = 1$	1
12 12 (2)	n	1	2	3	4	Attempting to find the second two terms of the <i>n</i> th	1
12.13 (d)		10	12	16	22	term	
	n^2	1	4	9	16	Correct answer.	1
	Difference	9	8	7	6		
	This is a linear	sequence	with <i>n</i> th t	erm:			
	-n + 10						
	The <i>n</i> th term of the sequence is $n^2 - n + 10$						

Question	Answer					Extra information	Marks
12.13 (b)	Sequence: 1st difference 2nd difference 2nd difference $an^2 + bn + c$ $a = 4 \div 2 = 2$ n 2n^2 Difference This is a linear 5n - 16 The <i>n</i> th term	9, 2, : 11 15 e: 4 e is 4, so in 1 -9 2 -11 r sequence of the seq	17, 30 5 19 4 n the quad 2 2 8 -6 e with <i>n</i> th uence is 2	$ \frac{3}{17} $ $ \frac{17}{18} $ $ -1 $ term: $ n^2 + 5n - 1 $	4 36 32 4	Finding <i>a</i> = 2 Attempting to find the second two terms of the <i>n</i> th term Correct answer.	1 1 1
12.14	Since <i>n</i> is a positive integer, n^2 will always be positive and $4n$ will always be positive, so $n^2 + 4n + 6$ will always be positive. Alternatively, $n^2 + 4n + 6 = (n + 2)^2 + 2$ Since something squared is always greater than or equal to 0, $(n + 2)^2 + 2$ will always be positive.						1

Question	Answer	Extra information	Marks
12.15	$n = 4 \Rightarrow 16a + b = 42$ $n = 9 \Rightarrow 81a + b = 237$ Subtract the first equation from the second: 65a = 195 a = 3 Substitute this into either equation to get $b = -6$ So, the <i>n</i> th term is $3n^2 - 6$ 15th term will be $3 \times 15^2 - 6 = 669$	Method to find an equation in a and b . Finds a pair of simultaneous equations, and an attempt to eliminate b . a = 3 and $b = -6Substitutes n = 15 into formulaCorrect final answer$	1 1 1 1 1
12.16	$\frac{4}{9+\sqrt{y}} = \frac{9-\sqrt{y}}{4}$ $(9+\sqrt{y})(9-\sqrt{y}) = 16$ $81-y=16$ $y=65$	Sets up correct equation Attempt to expand and solve for <i>y</i> Correct answer	1 1 1
12.17 (a)	$\frac{1}{4}, \frac{2}{5}, \frac{3}{6}$	Substitutes $n = 1$, $n = 2$, $n = 3$ Correct answer	1
12.17 (b)	$\frac{n+2}{2n+3}$	Numerator correct Denominator correct	1
12.18 (a)	$\frac{\sqrt{3}}{3}, 1, \sqrt{3}$	Substitutes $n = 1, n = 2, n = 3$ Two terms correct All terms correct	1 1 1
12.18 (b)	$5(\sqrt{2})^n$	$5 \\ \left(\sqrt{2}\right)^n \text{ or } 2^{\frac{n}{2}}$	1

Question	Answer	Extra information	Marks
	Rearrange one equation to match the format of the other, in order to compare them, term by term: 3y-4x=18		
	-y + 10x = -32		
	Multiply the second equation by 3 and then add the two equations:		
12.19	3y-4x = 18 -3y+30x = -96 26x = -78 x = -3 Substitute $x = -3$ into either equation to find y. 3y-4(-3) = 18 3y+12 = 18	Attempt to use a multiplier Add or subtract equations Solve for either <i>x</i> or <i>y</i> . Fully correct answer	1 1 1 1
	3y = 6		
	<i>y</i> = 2		
	Solution is $(-3, 2)$		

Question	Answer	Extra information	Marks
12.20	Let $p = \text{cost of one pineapple}$, and $b = \text{cost of one banana}$ Form two equations: 3p + 6b = 1710 (1) 4p + 9b = 2405 (2) Multiply (1) by 4 and (2) by 3: 12p + 24b = 6840 -12p + 27b = 7215 -3b = -375 b = 125 Cost of one banana = £1.25 $3p + 6 \times 125 = 1710$ 3p = 960 p = 320 Cost of one pineapple = £3.20	Assign variables for the cost of one of each fruit Set up simultaneous equations Use multipliers to eliminate on variable Solve for either variable Substitute to solve for the other variable	1 1 1 1 1