Oxford Revise | Edexcel GCSE Maths Higher | Answers

Chapter 10 Quadratic graphs, iterations, solving quadratic inequalities

Question	Answer	Extra information	Marks
10.1 (a)	$\begin{aligned} & x^{2}-4 \leq-3 \\ & x^{2}-1 \leq 0 \end{aligned}$	Finding - 1 and 1 Correct solution Correct number line representation	1
10.1 (b)	$\begin{aligned} & 7 x^{2} \geq 28 \\ & x^{2} \geq 4 \\ & x^{2}-4 \geq 0 \end{aligned}$ Solution is $\mathrm{x} \leq-2$ or $\mathrm{x} \geq 2$	Finding -2 and 2 Correct solution (using "or", not "and") Correct number line representation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
10.2 (a)	$\begin{aligned} & x^{2}-8 x+15 \leq 0 \\ & (x-5)(x-3) \leq 0 \end{aligned}$ Roots are 3 and 5 The quadratic is U shaped, so the solution is the set of numbers between 3 and 5 , inclusive. In set notation, $\{x: 3 \leq x \leq 5\}$	Factorising or attempting to solve the quadratic Finding 3 and 5 Correct solution shown on a graph Correct solution in set notation	1

Question	Answer	Extra information	Marks
10.2 (b)	$3 x^{2}-x-4>0$ $(3 x-4)(x+1)<0$ Roots are $\frac{4}{3}$ and -1 The quadratic is U shaped, so the solution is the set of numbers less than -1 and greater than $\frac{4}{3}$ exclusive. In set notation, $\{x: x<-1\} \cup\left\{x: x>\frac{4}{3}\right\}$	Fanding $\frac{4}{3}$ and -1 Correct solution shown on a graph Correct solution in set notation	1

Question	Answer	Extra information	Marks
10.4	$\begin{aligned} & 14<\frac{w^{2}-7}{3}<31 \\ & 42<w^{2}-7<93 \\ & 49<w^{2}<100 \\ & w^{2}<100 \Rightarrow-10<w<10 \\ & w^{2}>49 \Rightarrow n<-7, n>7 \end{aligned}$ Both are satisfied when $-10<n<-7$ and also when $7<n<10$	Correct method to rearrange for w^{2} $49<w^{2}<100$ -10 and 10 , or -7 and 7 $-10<n<-7$ or $7<n<10$ Both inequality statements	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$
10.5 (a)	When $x=2, x^{4}-12 x=-8$ When $x=3, x^{4}-12 x=45$ As there is a change of sign, there is a root (solution) between 2 and 3	Substituting in 2 and 3 Correct conclusion	$\begin{array}{\|l\|} 1 \\ 1 \end{array}$
10.5 (b)	$\begin{aligned} x_{0} & =2 \\ x_{1} & =\sqrt[4]{12 \times 2}=2.213 \ldots \\ x_{2} & =2.270 \ldots \\ x_{3} & =2.284 \ldots \\ x_{4} & =2.288 \ldots \\ x_{5} & =2.289 \ldots \\ x_{6} & =2.289 \ldots \end{aligned}$ The solution is 2.289 , accurate to 3 dp	x_{1} At least six iterations Correct answer with reason	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
10.6 (a)	The roots are where the curve crosses the x-axis, so they can be found where $y=0$	Correct explanation	1

Question	Answer	Extra information	Marks
10.6 (b)	$\begin{aligned} & x^{3}+5 x^{2}-1=0 \\ & x^{3}=1-5 x^{2} \\ & x=\frac{1-5 x^{2}}{x^{2}} \end{aligned}$	Making x^{3} the subject Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
10.6 (c)	$\begin{aligned} & \hline x_{0}=-4 \\ & x_{1}=-4.937 \ldots \\ & x_{2}=-4.958 \ldots \\ & x_{3}=-4.959 \end{aligned}$ The solution is -4.96 , to 2 dp	At least two further iterations Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
10.6 (d)	$\begin{aligned} & x^{3}+5 x^{2}-1=0 \\ & 5 x^{2}=1-x^{3} \\ & x=\sqrt{\frac{1-x^{3}}{5}} \end{aligned}$	Making x^{2} the subject Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
10.6 (e)	$\begin{aligned} & x_{0}=0 \\ & x_{1}=0.447 \ldots \\ & x_{2}=0.426 \ldots \\ & x_{3}=0.429 \ldots \\ & x_{4}=0.429 \ldots \end{aligned}$ The solution is 0.43 , accurate to 2 dp	At least three further iterations Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
10.6 (f)	$\begin{aligned} & x_{0}=-1 \\ & x_{1}=-0.4 \\ & x_{2}=-0.532 \ldots \\ & x_{3}=-0.432 \ldots \\ & x_{4}=-0.499 \ldots \\ & x_{5}=-0.450 \ldots \\ & x_{6}=-0.484 \ldots \\ & x_{7}=-0.459 \ldots \end{aligned}$ The solution is -0.5 , accurate to 1 dp	At least five further iterations Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
10.7 (a)	$\begin{aligned} & x^{2}+6 x+10=(x+3)^{2}+1 \\ & a=3, b=1 \end{aligned}$	$\begin{aligned} & a=3 \\ & b=1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
10.7 (b)	$(-3,1)$		1
10.7 (c)		Shape correct with either y-intercept or turning point labelled. Shape correct with both y-intercept and turning point labelled.	

Question	Answer	Extra information	Marks
10.8	$\begin{aligned} & (x-1)(2-x)(x+4) \\ & =\left(3 x-2-x^{2}\right)(x+4) \\ & =-x^{3}-x^{2}+10 x-8 \end{aligned}$	Correct expansion of any two sets of brackets Attempt to multiply by the remaining set of brackets All terms correct, but unsimplified Fully correct and simplified	$\begin{array}{\|l} \hline 1 \\ 1 \\ 1 \\ 1 \end{array}$
10.9	$\begin{aligned} & x^{2}+25=6 x \\ & x^{2}-6 x+25=0 \\ & x^{2}-6 x+9-9+25=0 \\ & (x-3)(x-3)+16=0 \\ & (x-3)^{2}+16=0 \end{aligned}$	Rearrange to $x^{2}-6 x+25=0$ Attempt to create $(x-3)^{2}$ Fully correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

