

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 28 Probability

Question	Answer	Extra information	Marks
28.1 (a)	P(not white or orange) = P(yellow or pink) The events are mutually exclusive so we can add the probabilities. P(yellow or pink) = $0.15 + 0.26 = 0.41$	0.15 + 0.26 Correct answer, in decimal, fraction, or percentage form	1
28.1 (b)	P(orange) = 1 - (0.3 + 0.15 + 0.26) = 0.29 Number of orange counters = 200 × 0.29 = 58	1 – (0.3 + 0.15 + 0.26) Correct answer	1
28.2	There are $6 + 5 = 11$ non-red cubes. For the probability of choosing a red cube to be 0.5, there must be a total of 11 red cubes, which means Grace must have added 7 red cubes to the original 4.	Determining the number of red counters required in total Correct answer	1
28.3 (a)	There are eight faces, three of which show the number 4. Therefore, the probability of the dice landing on a 4 is $P(4) = \frac{3}{8}$		1
28.3 (b)	P(3) = $\frac{1}{4}$, so if the dice is thrown 40 times, we would expect it to land on 3: $40 \times \frac{1}{4} = 10$ times	$\frac{2}{8} \times 40$ or $\frac{10}{40}$ Correct answer	1
28.3 (c)	$P(4) = \frac{3}{8} = \frac{36}{\text{number of times thrown}}$ Number of times thrown = $\frac{36 \times 8}{3} = 96$ This is an estimate.	$\frac{36 \times 8}{3} \text{ or } \frac{36}{96}$ Correct answer	1

Question	Answer	Extra information	Marks
28.4	In one pack: P(exactly one bulb < 25 000) = P(bulb $1 > 25 000$ and bulb $2 < 25 000$) +	Finding the probability of getting 1 bulb that lasts longer and 1 that doesn't	1
	$\begin{array}{l} P(bulb\ 1 \leq 25\ 000\ and\ bulb\ 2 \geq 25\ 000) \\ = 0.92 \times 0.08 + 0.08 \times 0.92 = 0.1472 \end{array}$	Calculating this probability for a pack of 2 bulbs	1
	$500 \times 0.1472 = 73.6$ In 500 packs, you would expect 74 packs to have exactly 1 bulb that lasted longer than 25 000 hours	Correct answer	1
28.5 (a)	Pass 7 Glasses 16 40 No glasses 24 Fail 9 Fail 15	No more than one error Fully correct	1 1
28.5 (b)	From the top branch, far right: $\frac{7}{40}$		1

Question	Answer	Extra information	Marks
28.6 (a)	Frequency On its side = 22 Frequency Upside down = 20 Relative frequency Right way up = 0.16 Relative frequency Upside down = 0.4	One value correct All values correct	1 1
28.6 (b)	Probability in the first experiment = 0.4 Probability in the second experiment = $\frac{36}{100} = 0.36$ Probability was higher in the first experiment	Attempting to find probabilities for "upside down" in both experiments Correct answer with comparison	1 1
28.7 (a)	P(WinWin) = $\frac{1}{2} = \frac{2}{3} \times$ P(Win backgammon) P(Win backgammon) = $\frac{1}{2} \times \frac{3}{2} = \frac{3}{4}$ Thus, P(Lose backgammon) = $\frac{1}{4}$	$\frac{1}{2} = \frac{2}{3} \times P(\text{Win backgammon})$ $\frac{1}{4} \text{ on the correct branch}$ Fully correct	1 1 1
28.7 (b)	Nasim's friend winning means Nasim losing. Winning "at most one of the two games" is equivalent to saying "does not win both games". And this means Nasim does not win both games.	Multiplying along at least two sets of branches and adding	1
	P(Nasim Lose Lose) = $\frac{1}{3} \times \frac{3}{5} = \frac{1}{5}$ Therefore P(Nasim does not lose both games) = $1 - \frac{1}{5} = \frac{4}{5}$	Multiplying along three sets of branches Correct answer	1

Question	Answer					Extra information	Marks
28.8	First person Second person $ \begin{array}{c} \frac{4}{11} \\ \frac{4}{11} \\ \frac{7}{10} \\ \frac{7}{11} \\ \frac{7}{11} \\ \frac{6}{10} \\ \frac{6}{10}$				Correct first set of branches Correct second set of branches Adding the correct probabilities Fully correct	1 1 1 1	
	Draw a two-way table and use arithmetic to fill in the cells:						
	French	35	52	87			
20.0	German	34	17	51			
28.9	Italian	7	5	12		1 mark for each correct process to	
	Total	76	74	150		arrive at, in any order, the four Year	4
	$P(Y9 Italian) = \frac{7}{12}$			and Subject totals.			
28.10	Missing value Heads + Even Tails + Odd n	in the table number $= 27$: 7			27 or 26 correctly placed Both correct	1 1

Question	Answer	Extra information	Marks
28.11 (a)	Scores on 2nd penalty shot: $0.5 \times 0.7 + 0.5 \times 0.4 = 0.55$	$0.5 \times 0.7 + 0.5 \times 0.4$ Correct answer	1 1
28.11 (b)	Probability of missing 2 nd penalty = 1 – 0.55 = 0.45 (Using the result from part (a)) P(score on 1 st missed on 2 nd) = $\frac{0.5 \times 0.3}{0.45} = \frac{1}{3}$	$1 - 0.55 = 0.45$ $\frac{0.5 \times 0.3}{0.45}$ Correct answer or equivalent	1 1 1
28.12 (a)	Image: Cube numbers numbers 2	Venn diagram with 1 mark for each of the following: 2 clearly outside the union of the two sets 1 and 64 exclusively in the intersection 4, 16 and 25 exclusively in the square numbers Fully correct	1 1 1
28.12 (b)	$P(F \cap G) = \frac{2}{8} = \frac{1}{4}$		1

Question	Answer	Extra information	Marks
28.13 (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Venn diagram with 1 mark for each of the following: 1, 6, 9 and 10 clearly outside the two sets 11 and 17 exclusively in the intersection	1
	FG	and 25 exclusively in the set <i>P</i> or 21 and 25 exclusively in the set <i>G</i> Fully correct	1
28.13 (b) (i)	$P(F \cap G) = \frac{2}{11}$		1
28.13 (b) (ii)	$P(G') = \frac{7}{11}$		1
28.13 (b) (iii)	$P(F \text{ not } G) = \frac{3}{11}$		1
28.14 (a)	P(not apples) = $\frac{\overline{11+8+14}}{88} = \frac{3}{8}$	11 + 8 + 14 Correct answer	1
28.14 (b)	P(apples bananas) = $\frac{12+13}{12+13+8+14} = \frac{25}{47}$	Identifying the two subsets that make up the conditional probability Fully correct answer	1 1

Question	Answer	Extra information	Marks
28.15 (a)	Europe 22 85 11 34 8 21 North Africa America	Attempting to draw an appropriate Venn diagram (i.e. three intersecting circles inside a rectangle) 85 for Europe only, or at least 6 of the 8 entries correctly placed Numerator of 115 Correct answer or equivalent, e.g. 0.575 Full marks can be awarded for any working that doesn't include a diagram but does demonstrate a correct	1 1 1 1
	$P(\text{Europe}) = \frac{85 + 11 + 5 + 14}{200} = \frac{115}{200} = \frac{23}{40}$		
28.15 (b)	North America = $34 + 11 + 5 + 8 = 58$ North America and Africa = $5 + 8 = 13$ P(Africa North America) = $\frac{13}{58}$	Denominator of 58 Fully correct answer	1 1

Question	Answer	Extra information	Marks
28.16	P(Green) = 0.4, so P(Yellow or Pink) = $1 - 0.4 = 0.6$ The ratio 7 : 11 tells us that 0.6 is divided into two parts, those being	P(Yellow or Pink) = $1 - 0.4 = 0.6$	1
	$0.6 \times \frac{1}{18}$ and $0.6 \times \frac{1}{18}$, the latter being the probability of taking a pink	Dividing the 0.6 by the ratio $7:11$	1
	disc $0.6 \times \frac{11}{18} = \frac{11}{30}$	Fully correct answer	1
	h 4	$\frac{b}{b+w} = \frac{4}{9}$	1
28.17	$\frac{b}{b+w} = \frac{1}{9}$ $9b = 4b + 4w$ $5b - 4w = 0 (1)$ $\frac{b+4}{b+4} = \frac{5}{12}$	$\frac{b+4}{2} = \frac{5}{2}$	1
		b+4+w+8 12 Attempt to solve simultaneous	1
	b + 4 + w + 8 = 12 12b + 48 = 5b + 5w + 60	equations	1
	7b-5w=12 (2) Solve (1) and (2) simultaneously to get $w=20$, $b=16$	Solves for either b or w	1
		Both values correct	
28.18 (a)	$3\binom{3}{-5} + 2\binom{9}{4} = \binom{9}{-15} + \binom{18}{8}$	$\begin{pmatrix} 9\\-15 \end{pmatrix} + \begin{pmatrix} 18\\8 \end{pmatrix}$	1
	$= \begin{pmatrix} 27\\ -7 \end{pmatrix}$	Fully correct answer	1

Question	Answer	Extra information	Marks
28.18 (b)	$\begin{pmatrix} 9\\4 \end{pmatrix} - 3 \begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} 3\\-5 \end{pmatrix}$ 9 - 3x = 3 4 - 3y = -5 x = 2, y = 3	Set up the equation $\begin{pmatrix} 9\\ 4 \end{pmatrix} - 3 \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 3\\ -5 \end{pmatrix}$ Solve for either x or y. Solve for both	1 1 1
28.19	$2\sqrt{80} + 3\sqrt{50} + 4\sqrt{45}$ = $2\sqrt{16 \times 5} + 3\sqrt{25 \times 2} + 4\sqrt{9 \times 5}$ = $2 \times 4\sqrt{5} + 3 \times 5\sqrt{2} + 4 \times 3\sqrt{5}$ = $8\sqrt{5} + 15\sqrt{2} + 12\sqrt{5}$ = $20\sqrt{5} + 15\sqrt{2}$	Identify the square number factor of each surd Factor it out Fully correct answer, in simplest terms	1 1 1