

# **Oxford Revise | AQA GCSE Maths Higher | Answers**

Chapter 26 Circle theorems and circle geometry

| Question | Answer                                                                                                                                                                                                                               | Extra information                                                                                              | Marks  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|
| 26.1     | Substitute the coordinates $(1, 1)$ into the equation for the circle and show that it doesn't hold true: $1^2 + 1^2 \neq 1$                                                                                                          | Substituting $(1, 1)$ into the equation Correct explanation                                                    | 1<br>1 |
| 26.2 (a) | The radius is 4 and the centre is at $(0, 0)$ , so the circle's equation is $x^2 + y^2 = 16$                                                                                                                                         |                                                                                                                | 1      |
| 26.2 (b) | Substitute $x = 2\sqrt{2}$ and $y = 2\sqrt{2}$ into the equation $x^2 + y^2 = 16$ and<br>see if it is a true statement:<br>$(2\sqrt{2})^2 + (2\sqrt{2})^2 = 8 + 8 = 16$<br>The statement holds true, so the point lies on the circle | Substituting $x = 2\sqrt{2}$ and $y = 2\sqrt{2}$ into<br>the equation<br>Showing that the statement holds true | 1      |
| 26.2 (c) | <i>y</i> = -4                                                                                                                                                                                                                        |                                                                                                                | 1      |



| Question | Answer                                                                                                                                                                                                                                                                                                                                                                        | Extra information                                                                                                                                                                                 | Marks                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 26.3     | Gradient of the radius from origin to $(1, 2) = \frac{2}{1} = 2$<br>The tangent is perpendicular to the radius, so its gradient $= -\frac{1}{2}$<br>Equation of tangent line is of the form $y = -\frac{1}{2}x + c$<br>Use the point (1, 2) to find the value of $c$ :<br>$2 = -\frac{1}{2} \times 1 + c$<br>c = 2.5<br>Thus, the equation of the tangent is $y = 2.5 - 0.5x$ | Attempt to calculate gradient of the<br>radius<br>Negative reciprocal for tangent's<br>gradient<br>Attempt to substitute into $y = mx + c$<br>Attempting to solve to find $c$ .<br>Correct answer | 1<br>1<br>1<br>1<br>1 |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Extra information                                                                                                                                                                                                                                                                                                                       | Marks            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 26.4     | Show that all the angles are right angles and that all the sides are the same length.<br>Points are $A(0,\sqrt{10}), B(\sqrt{10},0), C(0,-\sqrt{10}), D(-\sqrt{10},0)$<br>To show <i>ABC</i> is a right angle, find the gradient of <i>AB</i> and of <i>BC</i> :<br>Gradient of $AB = \frac{\sqrt{10}}{-\sqrt{10}} = -1$<br>Gradient of $BC = \frac{\sqrt{10}}{\sqrt{10}} = 1$<br>These gradients are perpendicular, so <i>ABC</i> is a right angle. The same result can be found for the other three angles.<br>To show that the sides have the same length, use Pythagoras to find that:<br>$AB = BC = CD = DA = \sqrt{10 + 10} = \sqrt{20}$<br>Thus, <i>ABCD</i> is a square. | Finding the coordinates of <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i><br>Finding the gradient of any of <i>AB</i> , <i>BC</i> ,<br><i>CD</i> or <i>DA</i><br>Finding the length of any of <i>AB</i> , <i>BC</i> , <i>CD</i><br>or <i>DA</i><br>Full proof (which includes all sides<br>same length, all angles 90°) and<br>conclusion. | 1<br>1<br>1<br>1 |
| 26.5     | $x = 72^{\circ}$ (angles in the same segment are equal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Correct answer<br>Correct theorem stated                                                                                                                                                                                                                                                                                                | 1<br>1           |
| 26.6 (a) | $x = 78^{\circ}$ (angle at the centre is twice the angle at the circumference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Correct answer<br>Correct theorem stated                                                                                                                                                                                                                                                                                                | 1<br>1           |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Extra information                                                                                                                                                                                                    | Marks                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 26.6 (b) | You need to prove that $x = y$<br>First, draw the radii (see dotted lines).<br>Now, you know that the angle at the centre is twice the angle at the circumference.<br>Applying the theorem to $x$ and to $y$ ,<br>you have $z = 2x$<br>and $z = 2y$ so $2x = 2y$ and $x = y$ , as required.                                                                                                                                                                                 | Diagram showing the correct theorem<br>to be proved<br>Drawing the radii<br>Applying 'angle at the centre is twice<br>the angle at the circumference' (must<br>be stated clearly)<br>Clearly deducing that $x = y$ . | 1<br>1<br>1           |
| 26.7     | Angle $ADG = 90^{\circ}$ (The angle in a semicircle is a right angle.)<br>Angle $CED = 49^{\circ}$ (Angles in a triangle sum to $180^{\circ}$ .)<br>Angle $ACB = 41^{\circ}$ and angle $FEG = 49^{\circ}$ (Vertically<br>opposite angles are equal.)<br>Angle $EFG = 112^{\circ}$ (Angles in a triangle sum to $180^{\circ}$ .)<br>Angle $GAB = 180 - 112 = 68^{\circ}$ (Opposite angles in a cyclic quadrilateral<br>sum to $180^{\circ}$ .)<br>$z = 68 - 21 = 47^{\circ}$ | $ADG = 90^{\circ}$<br>$ACB = 41^{\circ}$ or CED = 49°<br>Correct circle theorem used and stated<br>$z = 47^{\circ}$<br>Full geometric reasons given.                                                                 | 1<br>1<br>1<br>1<br>1 |
| 26.8     | $x = 81^{\circ}$ ; the angle between the chord and tangent is equal to the angle in the alternate segment.                                                                                                                                                                                                                                                                                                                                                                  | Correct answer<br>Correct theorem stated                                                                                                                                                                             | 1<br>1                |

| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Extra information                                                                                                                                                                                                                                                                                                          | Marks            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 26.9      | Angle $X =$ angle $Y = (180^{\circ} - 64^{\circ}) \div 2 = 58^{\circ}$<br>(Tangents to a circle from a point are equal in length, and base angles of an isosceles triangle are equal and angles in a triangle sum to $180^{\circ}$ .)<br>Angle $Z =$ angle $X$ (= angle $Y$ ) = $58^{\circ}$<br>(The angle between the chord and tangent is equal to the angle in the alternate segment.)<br>$p = (180 - 58) \div 2 = 61^{\circ}$<br>(Base angles of an isosceles triangle are equal and angles in a triangle sum to $180^{\circ}$ .) | 3 marks for $p = 61^{\circ}$ (can be shown on<br>the diagram)<br>or<br>1 mark for angle $X$ (or angle $Y = 58^{\circ}$ )<br>(can be shown on the diagram)<br>1 mark for angle $Z = 58^{\circ}$<br>(can be shown on the diagram)<br>1 mark for $p = 61^{\circ}$ ;<br>1 mark for fully correct reasons stated<br>throughout. | 1<br>1<br>1<br>1 |
| 26.10 (a) | Use Pythagoras to show $(-4)^{2} + 3^{3} = 16 + 9 = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                            | 1                |



| Question  | Answer                                                     | Extra information                         | Marks |
|-----------|------------------------------------------------------------|-------------------------------------------|-------|
| 26.10 (b) | Circle with radius 5                                       | Circle with centre at (0, 0) and radius 5 | 1     |
|           | Axis intercepts at $(5, 0), (0, 5), (-5, 0)$ and $(0, -5)$ | Axis intercepts                           | 1     |



| Question  | Answer                                                                                                                                                                                                                                       | Extra information                                                                   | Marks  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------|
| 26.10 (c) | The angle is a semicircle is a right angle, so either <i>AC</i> or <i>BC</i> is a diameter.<br><i>A</i> and <i>BC</i> would each pass through the origin.<br>By symmetry, the possible coordinates of <i>C</i> are<br>(4, -3) and $(-3, -4)$ | Stating the correct circle theorem<br>Correct coordinates for both<br>possibilities | 1<br>1 |

| Question | Answer                                                                              | Extra information                                  | Marks |
|----------|-------------------------------------------------------------------------------------|----------------------------------------------------|-------|
|          | Rearranging, $y = -x - 6$                                                           | Rearranges and substitutes into the                | 1     |
|          | Substitute this value for y into the equation for the circle:                       | circle equation                                    |       |
|          | $x^2 + (-x - 6)^2 = 18$                                                             | Expand and simplifies to form a                    | 1     |
|          | $x^2 + x^2 + 12x + 36 = 18$                                                         | Correct method to solve the quadratic              | 1     |
| 26.11    | $2x^2 + 12x + 18 = 0$                                                               | Arrives at just one solution and makes             | 1     |
| 20.11    | $x^2 + 6x + 9 = 0$                                                                  | appropriate conclusion                             |       |
|          | $\left(x+3\right)^2=0$                                                              |                                                    |       |
|          | x = -3                                                                              |                                                    |       |
|          | The line meets the circle at just the one point, where $x = -3$ so it               |                                                    |       |
|          | must be a tangent.                                                                  |                                                    |       |
|          | $OAB = OCB = 90^{\circ}$                                                            |                                                    |       |
|          | Using the triangle OAB, $OA = \frac{8}{-500} = 6.7127$                              |                                                    |       |
|          | $\tan 50^{\circ}$                                                                   | $OAB = 90^\circ$ or $OCB = 90^\circ$               | 1     |
| 26.12    | Area of kite = $2 \times \left(\frac{1}{2} \times 8 \times 6.7127\right) = 53.7023$ | Correct method to find radius of sector            |       |
|          |                                                                                     | (= 6.7127)                                         | 1     |
|          | Area of sector = $2\pi \times 6.7127 \times \frac{100}{100} = 11.7160$              | Correct method for area of kite                    |       |
|          |                                                                                     | Correct method area of sector                      | 1     |
|          | Shaded area = $53.7023 11.7160 = 42.0 \text{ cm}^2$ (3 sf)                          | Correct answer to 3 significant figures.           | 1     |
| 26.13    | Angle $VWX = 84^{\circ}$ (Alternate Segment Theorem)                                |                                                    |       |
|          | Angle $OXV = 6^{\circ}$ (Tangent/Radius)                                            |                                                    |       |
|          | Angle $OVX = 6^{\circ}$ (Base angles of Isosceles Triangle)                         | Angle $VWX = 84^{\circ}$                           | 1     |
|          | Using triangle VXW,                                                                 | Angle $OXV = 6^{\circ}$ or Angle $OVX = 6^{\circ}$ | 1     |
|          | Angle $OVW = 180 - (6 + 6 + 39 + 84) = 45^{\circ}$                                  | Correct final answer                               | 1     |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                          | Extra information                                                                                                                                             | Marks                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 26.14    | $\frac{6}{x+2} = \frac{9x+3}{6}$ $36 = 9x^2 + 18x + 3x + 6$ $9x^2 + 21x - 30 = 0$ $3x^2 + 7x - 10 = 0$ $(3x+10)(x-1) = 0$ $x = -\frac{10}{3}, x = 1$ Disregard $x = -\frac{10}{3}$ , because it is less than 0.<br>Therefore $x = 1$ , and the first three terms are 3, 6, 12<br>Each term is twice the previous term; thus, the fifth term will be $12 \times 2 \times 2 = 48$ | $\frac{6}{x+2} = \frac{9x+3}{6}$ $9x^2 + 21x - 30 = 0$ $x = -\frac{10}{3}, x = 1$ Use x = 1 to find first 3 terms of 3, 6<br>and 12<br>Finding the fifth term | 1<br>1<br>1<br>1<br>1 |

| Question | Answer                                                                 | Extra information                                                         | Marks |
|----------|------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|
|          | AB = 8.8, BC = 7.8  and  AC = 5.6<br>Let $a = BC, b = AC, c = AB$      |                                                                           |       |
|          | Use the cosine rule to find the angle in question:                     |                                                                           |       |
| 26.15    | $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$                                 | Identify that the problem requires the cosine rule, and attempt to use it | 1     |
|          | $A = \cos^{-1}\left(\frac{b^2 + c^2 - a^2}{2bc}\right)$                | cos <sup>-1</sup> (expression) attempted                                  | 1     |
|          | $=\cos^{-1}\left(\frac{8.8^2+5.6^2-7.8^2}{2\times8.8\times5.6}\right)$ | Fully correct, to 1 dp                                                    | 1     |
|          | = 60.88217<br>To the nearest degree, the angle $A = 60.9^{\circ}$      |                                                                           |       |