Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 22 Similarity and congruence

Question	Answer	Extra information	Marks
22.1 (a)	$D F=24 \mathrm{~cm}$		1
22.1 (b)	$C A B=75^{\circ}$		1
22.2	$\angle D C E=\angle A C B$ (opposite angles) $\angle D E C=\angle C A B$ (alternate interior angles) $\angle E D C=\angle A B C$ (alternate interior angles) $A B=D E$ is given Thus, by ASA, the triangles are congruent.	$\begin{aligned} & \angle D C E=\angle A C B \\ & \angle D E C=\angle C A B \\ & \angle E D C=\angle A B C \end{aligned}$ Use of ASA test for congruency	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
22.3	$A B=D C$ (opposite sides of a parallelogram) Angle $F E H$ = angle FGH (diagonally opposite angles of a rhombus) Angle $G A B=$ angle $C J B$ (corresponding angles) and angle $C J B=$ angle $D C E$ (alternate angles) Therefore, angle $G A B=$ angle $D C E$ Triangles $A B G$ and CDE are congruent because of AAS (Angle Angle Side).	$A B=D C$ with reason Angle $F E H$ = angle $F G H$ with reason Angle $G A B=$ angle $D C E$ with reason(s) or for angle $E D C=$ angle $G B A$ with reason(s) All three conditions stated with reasons, along with conclusion e.g. AAS or ASA.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
22.4	The ratio of corresponding sides is 1.5 for all three pairs: $\frac{19.5}{13}=\frac{18}{12}=\frac{7.5}{5}=1.5$ Therefore, the triangles are similar.	Comparing at least two pairs of sides Scale factor of 1.5 with conclusion	1 1

Question	Answer	Extra information	Marks
22.5	$\begin{aligned} & \frac{A C}{A B}=\frac{A D}{A E} \\ & \frac{11.5}{9.2}=\frac{A D}{8.4} \\ & A D=\frac{8.4 \times 11.5}{9.2}=10.5 \\ & E D=A D-A E=10.5-8.4=2.1 \mathrm{~cm} \end{aligned}$	Comparing ratios of two pairs of sides Correct answer of 2.1 cm	
22.6	Length scale factor $=22 \div 10=2.2$ Therefore, volume scale factor $=2.2^{3}=10.648$ Mass is proportional to volume. Mass of $B=1.5 \times 10.648=15.972 \mathrm{~kg}$	Length scale factor of 2.2 Volume (or mass) scale factor of 10.648 Correct final answer	
22.7	Area scale factor $=50 \div 12.5=4$ Therefore, length scale factor $=\sqrt{4}=2$ Base length of shape $B=4 \times 2=8 \mathrm{~cm}$	$50 \div 12.5=4$ Length scale factor $=\sqrt{4}=2$ Correct final answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
22.8	Volume scale factor $=675 \div 25=27$ Therefore, the length scale factor $=\sqrt[3]{27}=3$ This makes the surface area scale factor $3^{2}=9$ Smaller solid's surface area $=360 \div 9=40 \mathrm{~cm}^{2}$	Length scale factor $=\sqrt[3]{27}=3$ Surface area scale factor $3^{2}=9$ Correct final answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
22.9	$80 \times 0.75=60$, and $120 \times 0.75=90$ Medium trapezoid has height $0.75 h$, and parallel sides of length 60 and 90 Area of medium trapezium: $\begin{aligned} & \frac{1}{2} \times(60+90) \times 0.75 h=56.25 h \\ & 0.75 h \times 0.5=0.375 h \\ & 60 \times 0.5=30 \\ & 90 \times 0.5=45 \end{aligned}$ Small trapezium has height $0.375 h$ and parallel sides of length 30 and 45 Area of small trapezium: $\begin{aligned} & \frac{1}{2} \times(30+45) \times 0.375 h=14.0625 h \\ & 56.25 h-14.0625 h=4050 \\ & 42.1875 h=4050 \\ & h=96 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 0.75 h \text { or } 60 \text { or } 90 \\ & 0.5 \times 0.75 h \text { or } 0.5 \times 60 \text {, or } 0.5 \times 90 \end{aligned}$ Attempt to use trapezium area formula Subtracting small from medium area Correct final answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
22.10	Let the height of the portion of the cone that was cut off be h. $\frac{24}{18}=\frac{36+h}{h}$ since the cones are similar $24 h=648+18 h$ $h=108 \mathrm{~mm}$ Radius of large cone $=24 \div 2=12$ Radius of small cone $=18 \div 2=9$ Volume of large cone $=\frac{1}{3} \pi \times 12^{2} \times(36+108)=6912 \pi$ Volume of small cone $=$ $\frac{1}{3} \pi \times 9^{2} \times 108=2916 \pi$ Volume of frustum $=6912 \pi-2916 \pi=3996 \pi \mathrm{~mm}^{3}$	Attempt to find h by equating ratios of corresponding lengths Solving to find h Using your value of h to find the volume of either the small cone or the large cone Finding both volumes and subtracting Correct final answer in terms of π.	1 1 1 1 1
22.11	$\begin{aligned} & \mathrm{B}=1.2 \mathrm{~A} \\ & \mathrm{~B}=0.4 \mathrm{C} \\ & \mathrm{So}, 1.2 \mathrm{~A}=0.4 \mathrm{C} \\ & \mathrm{~A}=\frac{0.4}{1.2} \mathrm{C}=\frac{1}{3} \mathrm{C} \end{aligned}$	$\mathrm{B}=1.2 \mathrm{~A} \text { or } \mathrm{B}=0.4 \mathrm{C}$ Equates answers Correct answer in simplest form	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
22.12	Volume ratio $=125: 8$ Length ratio $=\sqrt[3]{125}: \sqrt[3]{8}=5: 2$ Area ratio $=5^{2}: 2^{2}=25: 4$ Surface area of $J=460 \div 4 \times 25=2875 \mathrm{~cm}^{3}$	Cube roots the volume ratio Squares this answer Correct calculation Correct final answer, showing all working	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
22.13	Create triangle $C A D$, by introducing point D, the midpoint of $A B$. The base of triangle $C A D$ is thus 3 cm $\cos C A B=\frac{3}{15}$ $C A B=78.5^{\circ}(1 \mathrm{dp})$	Create triangle $C A D$ Use the cosine ratio Find the angle to 1 dp	1 1
22.14	Let the width be w. Then the length is $2 w$ Area $=$ length \times width $=w \times 2 w=2 w^{2}$ $2 w^{2}=20$ $w^{2}=10$ $w=\sqrt{10}$ Therefore, the length $=2 \sqrt{10} \mathrm{~cm}$	Attributing variables to the length and width Using the area formula Solving for the width Correct final answer for the length	1

