

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 20 Surface area and volume

Question	Answer	Extra information	Marks
20.1 (a)	$Volume = \pi \times r^2 h = \pi \times 4^2 \times 11 = 176\pi \mathrm{cm}^3$	$\pi \times 4^2 \times 11$ 176π	1 1
20.1 (b)	Curved surface area = $2 \times \pi \times 4 \times 11 = 88\pi$ Circular base area = $\pi \times 4^2 = 16\pi$ Total surface area = $120\pi = 377 \text{ cm}^2 (3 \text{ sf})$	$2 \times \pi \times 4 \times 11 = 88\pi$ $\pi \times 4^2 = 16\pi$ Adding all surfaces Correct answer, to 3 sf	1 1 1 1
20.2	Volume 1 = Volume 2 $\frac{1}{2} \times 1.6 \times 1.8 \times 11 = \frac{1}{2} \times 2.4 \times 4 \times h$ 15.84 = 4.8h $h = \frac{15.84}{4.8} = 3.3$ h = 3.3 cm	Convert to all mm or all cm Equate volumes correctly Solve for <i>h</i> Correct answer, in appropriate units	1 1 1 1

OXFORD REVISE

Question	Answer	Extra information	Marks
20.3	Volume of cube = $2\sqrt{2} = 2^{1} \times 2^{\frac{1}{2}} = 2^{\frac{3}{2}}$ Side length = $\sqrt[3]{V} = V^{\frac{1}{3}} = \left(2^{\frac{3}{2}}\right)^{\frac{1}{3}} = 2^{\frac{3}{2}\times\frac{1}{3}} = 2^{\frac{1}{2}} = \sqrt{2}$ Surface area of undrilled cube = $6 \times (\sqrt{2})^{2} = 12$ Area of holes = $2 \times \pi r^{2} = 2 \times \pi \times 0.25^{2} = \frac{\pi}{8}$ Surface area = $\left(12 - \frac{\pi}{8}\right)$ cm ²	Finding the length of the cube Finding area of six faces less two circles Fully correct answer	1 1 1
20.4 (a)	Number of parts = $2 + 1 = 3$ $2400\pi \div 3 = 800\pi$ Volume of larger jug = $2 \times 800\pi = 1600\pi$ $\pi \times 12^2 \times h = 1600\pi$ h = 11.11 = 11.1 cm, to 3 sf	Calculating volume of larger jug Use of correct formula Attempt to find height Correct answer, to 3 sf	1 1 1 1

20.4 (b)	Volume of smaller jug = 800π h = r $\pi r^2 \times r = 800\pi$ $r^3 = 800$ r = 9.28 cm	Use of correct formula Attempt to find height by substituting $h = r$ Correct answer, to 3 sf	1 1 1	
20.5	Area of base = $230 \times 230 = 52900 \text{m}^2$ Volume = $\frac{1}{3}bh = \frac{1}{3} \times 52900 \times 147$ = 2592100m^3 = 2600000m^3 , to 2 sf	$230 \times 230 = 52900$ $\frac{1}{3} \times 52900 \times 7$ Answer correct to 2 sf	1 1 1	
20.6	Surface area of sphere = $4\pi r^2 = 400\pi$ $r^2 = 100$ r = 10 The radius is 10 cm	$4\pi r^2 = 400\pi$ Correct answer	1 1	
20.7	Volume = $\frac{1}{2} \times \frac{4}{3} \pi r^3 = \frac{2}{3} \pi \times 25^3 = \frac{31250\pi}{3}$ To 3 sf, this is 32 700 cm ³	$\frac{\frac{1}{2} \times \frac{4}{3} \pi r^{3}}{\frac{31250\pi}{3}}$ Answer correct to 3 sf	1 1 1	

20.8	Volume of cone = $\frac{1}{3}\pi \times 6^2 \times 15 = 180\pi$ Volume of hemisphere = $\frac{2}{3}\pi \times 6^3 = 144\pi$ Total volume = 324π cm ³	Calculating volume of cone Calculating volume of hemisphere Correct final answer	1 1 1
20.9	$6 \times 1500 = 9000 \text{ ml} = 9000 \text{ cm}^3$ $100 \times 60 \times h = 9000$ h = 1.5 cm	1 litre = 1000 ml or 1 ml = 1 cm ³ used $6 \times$ volume in each jug $100 \times 60 \times h$ Correct answer	1 1 1 1
20.10	$2\pi rh + 2\pi r^2 = 2\pi \times 10 \times 40 + 2\pi \times 10^2$ Surface area = = 1000\pi = 3141.6 Greta would need 3141.6 cm ³ of fabric. Greta has 3000 cm ³ fabric. So, she does not have enough fabric.	Attempt to use formula 1000π or 3141.6 Correct comparison with 3000 cm^3	1 1 1
20.11	Volume of cuboid = $6 \times 20 \times 18 = 2160 \text{ cm}^2$ Volume of half cylinder = $\frac{1}{2} \times \pi r^2 h = \frac{1}{2} \times \pi \times 10^2 \times 18 = 900\pi \text{ cm}^2$ Total volume = $2160 + 900\pi \text{ cm}^2$	Correct method for volume of cuboid Correct method for volume of half cylinder (<i>r</i> = 10) Correct answer	1 2 1

	Questions referring to previous content				
20.12	$\frac{3}{8} \text{ of the parcels are medium}$ $\frac{5}{8} \text{ of the parcels are large}$ $\frac{1}{3} \text{ of the medium parcels are 1st class}$ $\frac{1}{3} \times \frac{3}{8} = \frac{1}{8}$ $\frac{3}{5} \text{ of the large parcels are 1st class}$ $\frac{3}{5} \times \frac{5}{8} = \frac{3}{8}$ $\frac{1}{8} + \frac{3}{8} = \frac{1}{2}$ $\frac{1}{2} \text{ of the parcels are 1st class}$	1 mark for $\frac{3}{8}$ or $\frac{5}{8}$ 1 mark for $\frac{1}{3}$ or $\frac{3}{5}$ 1 mark for $\frac{1}{3} \times \frac{3}{8}$ or $\frac{3}{5} \times \frac{5}{8}$ 1 mark for correct final answer	1 1 1 1		

20.13	Compare fractions $\frac{2}{3}$ and $\frac{7}{8}$ $\frac{2}{3} = \frac{16}{3}$	Obtaining the sector area for one of the two Obtaining both sector areas Comparing the two, with the correct conclusion	1	
-------	---	---	---	--