Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 2 Rounding, truncating, error intervals, and estimating

Question	Answer	Extra information	Marks
2.1	Error interval for P is $1 \leq P<2$ Error interval for Q is $0.6 \leq Q<0.7$ Error interval for $P+Q$ is $1.6 \leq P+Q<2.7$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
2.2	$\begin{aligned} \sqrt{0.06} & =\sqrt{0.01} \times \sqrt{6} \\ & =0.1 \sqrt{6} \\ & =0.245(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \sqrt{0.01} \times \sqrt{6} \text { or } 0.1 \sqrt{6} \\ & 0.24494 \ldots \end{aligned}$ Correct answer, to 3 sf.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
2.3 (a)	Lower bound = $\begin{aligned} \frac{6.15}{20.35^{2}} & =0.014850678 \ldots \\ & =0.014851(5 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.15 \\ 20.35 \\ \text { Correct answer } \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
2.3 (b)	Lower bound $=0.014851$ Upper bound $=0.015242$ Bounds agree when rounded to 2 sf , so the value of A is 0.015	Explanation Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
2.4	Length: $\mathrm{LB}=29.95 \mathrm{~cm}, \mathrm{UB}=30.05 \mathrm{~cm}$ Width: $\mathrm{LB}=25.35 \mathrm{~cm}, \mathrm{UB}=25.45 \mathrm{~cm}$ Height: $\mathrm{LB}=9.15 \mathrm{~cm}, \mathrm{UB}=9.25 \mathrm{~cm}$ Mass: LB $=56.375 \mathrm{~kg}, \mathrm{UB}=56.625 \mathrm{~kg}$ Volume LB $=29.95 \times 25.35 \times 9.15$ Volume UB $=30.05 \times 25.45 \times 9.25$ $\begin{aligned} \text { Density } \mathrm{LB} & =\text { Mass } \mathrm{LB} \div \text { Volume UB } \\ & =0.007969 \ldots \mathrm{~kg} / \mathrm{cm}^{3} \end{aligned}$ Density UB $=$ Mass UB \div Volume LB $=0.008151 \ldots \mathrm{~kg} / \mathrm{cm}^{3}$ The bounds are equal when rounded to 1 sf .	Any correct LB or UB for any dimension Correct method to find LB and UB for volume Correct method to find LB and UB for density Correct bounds for density Correct answer, with explanation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
2.5 (a)	20190		1
2.5 (b)	20200		1
2.5 (c)	20000		1
2.5 (d)	20000		1
2.6 (a)	0.018881333		1
2.6 (b) (i)	0.01		1
2.6 (b) (ii)	0.019		1

Question	Answer	Extra information	Marks
2.7	Akira has either misunderstood the question and rounded to 2 decimal places, or thought that the first zero after the decimal point is significant.	Either correct explanation	1

OXFORD REVISE

Question	Answer	Extra information	Marks
2.1	Error interval for P is $1 \leq P<2$ Error interval for Q is $0.6 \leq Q<0.7$ Error interval for $P+Q$ is $1.6 \leq P+Q<2.7$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
2.2	$\begin{aligned} \sqrt{0.06} & =\sqrt{0.01} \times \sqrt{6} \\ & =0.1 \sqrt{6} \\ & =0.245(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \sqrt{0.01} \times \sqrt{6} \text { or } 0.1 \sqrt{6} \\ & 0.24494 \ldots \end{aligned}$ Correct answer, to 3 sf.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
2.3 (a)	Lower bound = $\begin{aligned} \frac{6.15}{20.35^{2}} & =0.014850678 \ldots \\ & =0.014851(5 \mathrm{sf}) \end{aligned}$	6.15 20.35 Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
2.3 (b)	Lower bound $=0.014851$ Upper bound $=0.015242$ Bounds agree when rounded to 2 sf , so the value of A is 0.015	Explanation Correct answer	1

Question	Answer	Extra information	Marks
2.4	Length: $\mathrm{LB}=29.95 \mathrm{~cm}, \mathrm{UB}=30.05 \mathrm{~cm}$ Width: $\mathrm{LB}=25.35 \mathrm{~cm}, \mathrm{UB}=25.45 \mathrm{~cm}$ Height: $\mathrm{LB}=9.15 \mathrm{~cm}, \mathrm{UB}=9.25 \mathrm{~cm}$ Mass: LB $=56.375 \mathrm{~kg}, \mathrm{UB}=56.625 \mathrm{~kg}$ Volume LB $=29.95 \times 25.35 \times 9.15$ Volume UB $=30.05 \times 25.45 \times 9.25$ $\begin{aligned} \text { Density } \mathrm{LB} & =\text { Mass } \mathrm{LB} \div \text { Volume UB } \\ & =0.007969 \ldots \mathrm{~kg} / \mathrm{cm}^{3} \end{aligned}$ Density UB $=$ Mass UB \div Volume LB $=0.008151 \ldots \mathrm{~kg} / \mathrm{cm}^{3}$ The bounds are equal when rounded to 1 sf .	Any correct LB or UB for any dimension Correct method to find LB and UB for volume Correct method to find LB and UB for density Correct bounds for density Correct answer, with explanation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
2.5 (a)	20190		1
2.5 (b)	20200		1
2.5 (c)	20000		1
2.5 (d)	20000		1
2.6 (a)	0.018881333		1
2.6 (b) (i)	0.01		1
2.6 (b) (ii)	0.019		1

Question	Answer	Extra information	Marks
2.7	Akira has either misunderstood the question and rounded to 2 decimal places, or thought that the first zero after the decimal point is significant.	Either correct explanation	1
2.8	$\frac{2.67 \times 1.36}{0.11+0.42} \approx \frac{3 \times 1}{0.1+0.4}=\frac{3}{0.5}=6$	Round 17 to 20 5 months $=$ approx. 150 days 20 fish per day for 150 days $=3000$ Add this to 1000 for an estimate of 4000 fish	Rounding to 1 sf for each number Correct answer
2.10	Profit estimation per portion $=9-3=£ 6$ 96 rounds to 100 Correct estimation of 5 months' worth of fish	Rounding portions, sale price and cost to 1 sf A profit calculation Correct answer	1 1 Estimation for week's profit is $100 \times 6=£ 600$
2.11 (a)	$\sqrt{47}$ is a little lower than $\sqrt{49}$ which is 7, so $\sqrt{47} \approx 6.9$	Accept 6.8 or 6.9	
2.11 (b)	$\sqrt{196}<\sqrt{200}<\sqrt{225}$ so $14<\sqrt{200}<15$ 200 is much closer to 196 than it is to 225, so the square root will be much closer to 14 than 15. Estimate 14.1	Accept 14.1 or 14.2	1

Question	Answer	Extra information	Marks
2.12	$\begin{aligned} \frac{\sqrt{5^{3}}}{5}+2 \sqrt{125} & =\frac{5^{\frac{3}{2}}}{5}+2 \times \sqrt{25 \times 5} \\ & =5^{\frac{3}{2}-1}+2 \times 5 \times \sqrt{5} \\ & =5^{\frac{1}{2}}+10 \times 5^{\frac{1}{2}} \\ & =11 \times 5^{\frac{1}{2}} \end{aligned}$	Writes $\sqrt{5^{3}}$ as $5^{\frac{3}{2}}$ Factors out a 5 from $\sqrt{125}$ Uses rules of exponents to get $5^{\frac{3}{2}} \div 5=5^{\frac{1}{2}}$ Fully correct	
2.13	$20 \div(12-7)+8 \times(4+1)+3=47$	One set of brackets inserted to group $12-7$ or $4+1$ Fully correct	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$

