

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 18 Polygons, angles, and parallel lines

Question	Answer	Extra information	Marks
18.1	Angle $AFG = 75^{\circ}$ (opposite angles) Angle $AGF = 80^{\circ}$ (adjacent angles in a parallelogram) Angle $GAF(x) = 180 - 75 - 80 = 25^{\circ}$		1 1 1
18.2 (a)	x=3		1
18.2 (b)	1+3+1+3=8 parts The angles in a parallelogram add up to 360° . $360^\circ \div 8=45^\circ$ $3\times 45^\circ=135^\circ$ Two of the angles are 45° and two of the angles are 135°	$360 \div 8 \ (= 45)$ Fully correct answer	1 1
18.3	Angle $x = 136^{\circ} - 4c$ (Corresponding angles are equal.) $3c + 63^{\circ} + 136^{\circ} - 4c = 180^{\circ}$ (Angles on a straight line sum to 180°) $199^{\circ} - c = 180^{\circ} \Rightarrow c = 19^{\circ}$ $y = 136^{\circ} - 4 \times 19^{\circ} = 60^{\circ}$ (Alternate angles are equal.) $d = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$ (Angles on a straight line sum to 180°)	3c + 63 + 136 - 4c = 180 Solving equation $d = 30$ Geometric reasons given.	1 1 1 1

Question	Answer	Extra information	Marks
18.4	$151^{\circ} - 3x + x + y + 51^{\circ} = 180^{\circ}$ (Angles on a straight line sum to 180°) $x + 53^{\circ} + 2y + 36^{\circ} = 180^{\circ}$ (Angles on a straight line sum to 180°) Simplifying both equations, $22 = 2x - y$ (1), $91 = x + 2y$ (2) $2 \times (1) + (2)$: $135 = 5x$; $x = 27^{\circ}$ Substituting into (2), $91 = 27 + 2y$; $2y = 64$; $y = 32^{\circ}$ Substituting these values into each slice size, the angles are 70° , 110° , 100° and 80° . The largest slice size is 110°	$151 - 3x + x + y + 51 = 180$ or $x + 53 + 2y + 36 = 180$ with reason (angles on a straight line sum to 180°) Attempt to solve Correct answer for both x and y 110° as final answer.	1 1 1 1
18.5	Angles on a straight line add up to 180° . Angle $ABC = 180^\circ - 95^\circ = 85^\circ$ Opposite angles of a rhombus are equal. Therefore, $x = 85^\circ$	Each correct reason stated Correct answer of 85°	1
18.6	Angle $EAD=44^\circ$ (alternate angles) Angle $FDE=180^\circ-90^\circ-44^\circ=46^\circ$ (Angles in triangle add up to 180°)	Angle $EAD = 44$ 180 - 90 — angle $EADCorrect final answer.$	1 1 1
18.7	Angle STU = angle PQR = 60° (equilateral triangles) $t = \frac{360 - (60 + 60)}{2} = 120^\circ$ (Opposite angles of a parallelogram are equal and angles in a quadrilateral sum to 360° .)	2 marks for $t = 120$ or 1 mark for either <i>STU</i> or $PQR = 60$; 1 mark for any correct geometrical reason; 1 mark for fully correct geometrical reasons.	3

Question	Answer	Extra information	Marks
18.8	$x+y=2x-y+99^{\circ}$ (from kite symmetry) $x+y+2x-y+99^{\circ}+y+25+x-25=360^{\circ}$ (Angles in a quadrilateral add up to 360° .) Simplifying both equations, -x+2y=99 (1), $4x+y=261$ (2) $4\times(1)+(2)$: $9y=657$; $y=73^{\circ}$ Substituting into (2), $4x+73=261$; $4x=188$; $x=47^{\circ}$	x + y = 2x - y + 99 or $x + y + 2x - y + 99 + y + 25 + x - 25 = 360$ Attempt to eliminate either x or y	1
		and solve Correct answer for x or y Correct answer for both x and y .	1
18.9	$360^{\circ} \div 60^{\circ} = 6$ The shape is a (regular) hexagon.	$360 \div 60 = 6$ or for stating that exterior angles add to 360° Hexagon	1
18.10	$(n-2) \times 180^{\circ} = 1620^{\circ}$ $n = 1620 \div 180 + 2 = 11$ The polygon has 11 sides.	$(n-2) \times 180 = 1620$	1
18.11	$(8-2) \times 180^\circ = 1080^\circ$ $1080^\circ \div 8 = 135^\circ$ (= angle in octagon) $x = 360^\circ - 60^\circ$ (equilateral triangle) -90° (square) -135° (octagon) = 75° (Angles around a point add up to 360°)	Method to find interior angle of octagon 135 Subtracting your 3 angles from 360 Correct final answer of 75°. If no marks scored, score 1 mark for 60 (equilateral triangle) or 90 (square).	1 1 1 1
18.12	Exterior angle = $180^{\circ} - 80^{\circ} = 100^{\circ}$ $360^{\circ} \div 100^{\circ} = 3.6$ A polygon cannot have 3.6 sides, so Sophia is correct.	$180 - 80 \ (= 100^{\circ})$ $360 \div 100 \ (= 3.6^{\circ})$ Concluding that Sophia is correct with full explanation.	1 1 1

Question	Answer	Extra information	Marks
18.13	Angle $BFE = 50^\circ$ (Alternate angles are equal) Angle $FHE = 100^\circ$ (Angles in a triangle sum to 180°) Angle $FHI = 80^\circ$ (Angles on a straight line sum to 180°) $x = 90^\circ$ (Angles in a triangle sum to 180°)	1 correct angle with a correct reason 2 correct angles with correct reasons Fully correct answer	1 1 1
18.14	Sum of interior angles = $(6-2) \times 180 = 720^{\circ}$ Let angle $FED = x$ Then angle $BCD = 2x$ $141 + 127 + 90 + 134 + 2x + x = 720^{\circ}$ $3x = 228^{\circ}$ $x = 76^{\circ}$ Angle $FED = 76^{\circ}$	Method for sum of interior angles (= 720°) Use of BCD = FED (e.g. algebraically) Correct equation Correct method of solution Correct answer	1 1 1 1
18.15	Sum of interior angles = $(5-2) \times 180$ (= 540°) Angle $ABC = 1.5 \times 82$ (= 123°) So angle $AED = 123^\circ$ (by symmetry) Let angle $BCD = x$ Then angle $CDE = x$ (by symmetry) $82 + 123 + 123 + x + x = 540^\circ$ $2x = 212^\circ$ $x = 106^\circ$ Angle $BCD = 106^\circ$	Method for sum of interior angles $(=540^\circ)$ $1.5 \times 82 \ (=123^\circ)$ Symmetry used at least once (e.g. $AED = 123^\circ)$ Correct equation Correct method of solution Correct answer	1 1 1 1 1

Question	Answer	Extra information	Marks
	$4^2 \times 8^2 = \frac{1}{2^x}$	Convert 4 and 8 to powers of 2 Use rules of exponents to express	1
10.16	$(2^{2})^{2} \times (2^{3})^{2} = \frac{1}{2^{x}}$ $2^{4} \times 2^{6} = 2^{-x}$	each as the number 2 raised to a single power	1
18.16		Write $\frac{1}{2^x}$ as 2^{-x}	1
	$2^{10} = 2^{-x}$ $x = -10$	Equate the powers to get the final answer	1

Question	Answer	Extra information	Marks
18.17	$y \propto \sqrt{2x}$ $y = \frac{k}{\sqrt{2x}}$ $\frac{1}{4} = \frac{k}{\sqrt{64}}$ $\frac{1}{4} = \frac{k}{8}$ $k = 2$ $3\sqrt{2} = \frac{2}{\sqrt{2x}}$ $3\sqrt{2} \times \sqrt{2x} = 2$ $3\sqrt{2} \times \sqrt{2} \times \sqrt{x} = 2$ $3 \times 2 \times \sqrt{x} = 2$ $\sqrt{x} = \frac{1}{3}$ $x = \frac{1}{9}$	Write the relationship using a constant of proportionality Solve for the constant of proportionality Use this with the value $y = 3\sqrt{2}$ Obtaining $\sqrt{x} = \frac{1}{3}$ Fully correct answer	1 1 1 1