Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 18 Polygons, angles, and parallel lines

Question	Answer	Extra information	Marks
18.1	Angle $A F G=75^{\circ}$ (opposite angles) Angle AGF $=80^{\circ}$ (adjacent angles in a parallelogram) Angle GAF $(x)=180-75-80=25^{\circ}$		$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ \hline \end{array}$
18.2 (a)	$x=3$		1
18.2 (b)	$1+3+1+3=8 \text { parts }$ The angles in a parallelogram add up to 360°. $\begin{aligned} & 360^{\circ} \div 8=45^{\circ} \\ & 3 \times 45^{\circ}=135^{\circ} \end{aligned}$ Two of the angles are 45° and two of the angles are 135°	$360 \div 8(=45)$ Fully correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
18.3	Angle $x=136^{\circ}-4 c$ (Corresponding angles are equal.) $3 c+63^{\circ}+136^{\circ}-4 c=180^{\circ}$ (Angles on a straight line sum to 180°) $\begin{aligned} & 199^{\circ}-c=180^{\circ} \Rightarrow c=19^{\circ} \\ & y=136^{\circ}-4 \times 19^{\circ}=60^{\circ} \end{aligned}$ (Alternate angles are equal.) $d=180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$ (Angles on a straight line sum to 180°)	$3 c+63+136-4 c=180$ Solving equation $d=30$ Geometric reasons given.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
18.4	$151^{\circ}-3 x+x+y+51^{\circ}=180^{\circ}$ (Angles on a straight line sum to 180°) $x+53^{\circ}+2 y+36^{\circ}=180^{\circ}$ (Angles on a straight line sum to 180°) Simplifying both equations, $\begin{aligned} & 22=2 x-y(1), 91=x+2 y(2) \\ & 2 \times(1)+(2): 135=5 x ; x=27^{\circ} \end{aligned}$ Substituting into (2), $91=27+2 y$; $2 y=64 ; y=32^{\circ}$ Substituting these values into each slice size, the angles are $70^{\circ}, 110^{\circ}$, 100° and 80°. The largest slice size is 110°	$151-3 x+x+y+51=180$ or $x+53$ $+2 y+36=180$ with reason (angles on a straight line sum to 180°) Attempt to solve Correct answer for both x and y 110° as final answer.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
18.5	Angles on a straight line add up to 180°. Angle $A B C=180^{\circ}-95^{\circ}=85^{\circ}$ Opposite angles of a rhombus are equal. Therefore, $x=85^{\circ}$	Each correct reason stated Correct answer of 85°	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
18.6	Angle $E A D=44^{\circ}$ (alternate angles) Angle $F D E=180^{\circ}-90^{\circ}-44^{\circ}=46^{\circ}$ (Angles in triangle add up to 180°)	Angle $E A D=44$ 180-90-angle EAD Correct final answer.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
18.7	Angle $S T U=$ angle $P Q R=60^{\circ}$ (equilateral triangles) $t=\frac{360-(60+60)}{2}=120^{\circ}$ (Opposite angles of a parallelogram are equal and angles in a quadrilateral sum to 360°.)	2 marks for $t=120$ or 1 mark for either STU or $P Q R=60$; 1 mark for any correct geometrical reason; 1 mark for fully correct geometrical reasons.	3

Question	Answer	Extra information	Marks
18.8	$\begin{aligned} & x+y=2 x-y+99^{\circ} \text { (from kite symmetry) } \\ & x+y+2 x-y+99^{\circ}+y+25+x-25=360^{\circ} \end{aligned}$ (Angles in a quadrilateral add up to 360°.) Simplifying both equations, $\begin{aligned} & -x+2 y=99(1), 4 x+y=261(2) \\ & 4 \times(1)+(2): 9 y=657 ; y=73^{\circ} \end{aligned}$ Substituting into (2), $4 x+73=261 ; 4 x=188$; $x=47^{\circ}$	$\begin{aligned} & x+y=2 x-y+99 \\ & \text { or } x+y+2 x-y+99+y+25+x- \\ & 25=360 \end{aligned}$ Attempt to eliminate either x or y and solve Correct answer for x or y Correct answer for both x and y.	1 1 1 1
18.9	$360^{\circ} \div 60^{\circ}=6$ The shape is a (regular) hexagon.	$360 \div 60=6$ or for stating that exterior angles add to 360° Hexagon	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
18.10	$\begin{aligned} & (n-2) \times 180^{\circ}=1620^{\circ} \\ & n=1620 \div 180+2=11 \\ & \text { The polygon has } 11 \text { sides. } \end{aligned}$	$\begin{aligned} & (n-2) \times 180=1620 \\ & 11 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
18.11	$\begin{aligned} & (8-2) \times 180^{\circ}=1080^{\circ} \\ & 1080^{\circ} \div 8=135^{\circ}(=\text { angle in octagon }) \\ & x=360^{\circ}-60^{\circ} \text { (equilateral triangle) }-90^{\circ} \text { (square) }-135^{\circ} \text { (octagon) }= \\ & 75^{\circ} \\ & \text { (Angles around a point add up to } 360^{\circ} \text {) } \end{aligned}$	Method to find interior angle of octagon 135 Subtracting your 3 angles from 360 Correct final answer of 75°. If no marks scored, score 1 mark for 60 (equilateral triangle) or 90 (square).	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
18.12	Exterior angle $=180^{\circ}-80^{\circ}=100^{\circ}$ $360^{\circ} \div 100^{\circ}=3.6$ A polygon cannot have 3.6 sides, so Sophia is correct.	$\begin{aligned} & 180-80\left(=100^{\circ}\right) \\ & 360 \div 100\left(=3.6^{\circ}\right) \end{aligned}$ Concluding that Sophia is correct with full explanation.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
18.13	Angle $B F E=50^{\circ}$ (Alternate angles are equal) Angle $F H E=100^{\circ}$ (Angles in a triangle sum to 180°) Angle $F H I=80^{\circ}$ (Angles on a straight line sum to 180°) $x=90^{\circ}$ (Angles in a triangle sum to 180°)	1 correct angle with a correct reason 2 correct angles with correct reasons Fully correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
18.14	```Sum of interior angles \(=(6-2) \times 180=720^{\circ}\) Let angle FED \(=x\) Then angle \(B C D=2 x\) \(141+127+90+134+2 x+x=720^{\circ}\) \(3 x=228^{\circ}\) \(x=76^{\circ}\) Angle \(F E D=76^{\circ}\)```	Method for sum of interior angles ($=720^{\circ}$) Use of $B C D=F E D$ (e.g. algebraically) Correct equation Correct method of solution Correct answer	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$
18.15	$\begin{aligned} & \text { Sum of interior angles }=(5-2) \times 180\left(=540^{\circ}\right) \\ & \text { Angle } A B C=1.5 \times 82\left(=123^{\circ}\right) \\ & \text { So angle } A E D=123^{\circ}(\text { by symmetry }) \\ & \text { Let angle } B C D=x \\ & \text { Then angle } C D E=x(\text { by symmetry }) \\ & 82+123+123+x+x=540^{\circ} \\ & 2 x=212^{\circ} \\ & x=106^{\circ} \\ & \text { Angle } B C D=106^{\circ} \\ & \hline \end{aligned}$	Method for sum of interior angles $\left(=540^{\circ}\right)$ $1.5 \times 82\left(=123^{\circ}\right)$ Symmetry used at least once (e.g. $\left.A E D=123^{\circ}\right)$ Correct equation Correct method of solution Correct answer	1 1 1 1 1

Question	Answer	Extra information	Marks
18.16	$4^{2} \times 8^{2}=\frac{1}{2^{x}}$	Convert 4 and 8 to powers of 2 Use rules of exponents to express each as the number 2 raised to a single power	1
	1		
	Write $\frac{1}{2^{x}}$ as 2^{-x} $2^{10}=2^{-x}$ $x=-10$	Equate the powers to get the final answer	1

Question	Answer	Extra information	Marks
18.17	$\begin{aligned} & y \propto \sqrt{2 x} \\ & y=\frac{k}{\sqrt{2 x}} \\ & \frac{1}{4}=\frac{k}{\sqrt{64}} \\ & \frac{1}{4}=\frac{k}{8} \\ & k=2 \\ & 3 \sqrt{2}=\frac{2}{\sqrt{2 x}} \\ & 3 \sqrt{2} \times \sqrt{2 x}=2 \\ & 3 \sqrt{2} \times \sqrt{2} \times \sqrt{x}=2 \\ & 3 \times 2 \times \sqrt{x}=2 \\ & \sqrt{x}=\frac{1}{3} \\ & x=\frac{1}{9} \end{aligned}$	Write the relationship using a constant of proportionality Solve for the constant of proportionality Use this with the value $y=3 \sqrt{2}$ Obtaining $\sqrt{x}=\frac{1}{3}$ Fully correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

