Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 17 Compound measures and multiplicative reasoning

Question	Answer	Extra information	Marks
17.1	$\begin{aligned} & \text { Rate }=\frac{\text { Volume }}{\text { time }} \\ & 20=\frac{2400}{t} \\ & t=\frac{2400}{20} \\ & t=120 \end{aligned}$ Time $=120$ seconds	$2400 \div 20$ Correct answer, including units	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.2	$\text { Density }=\frac{\text { mass }}{\text { volume }}=\frac{38700}{5}=7740 \mathrm{~kg} / \mathrm{m}^{3}$	Convert g to kg Use of the formula for density Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17.3	$\begin{aligned} & \text { Speed }=\frac{\text { distance }}{\text { time }} \\ & 47=\frac{5.64}{t} \\ & t=\frac{5.64}{47}=0.12 \text { hours } \end{aligned}$ 0.12 hours $=7.2$ minutes 0.2 minutes $=12$ seconds Therefore, time is 7 minutes and 12 seconds	Convert to consistent units Attempt to use formula to find the time 0.12 hours Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
17.4	$\begin{gathered} \text { France: } 58800 \times 1.15=£ 67620 \\ £ 67620 \div 12=£ 5635 \text { per acre } \\ \text { Argentina: } 4520000 \div 70.12=£ 64460.92 \\ \quad £ 64460.92 \div 15=£ 4297.39 \text { per acre } \end{gathered}$ Lower cost per acre in Argentina	Convert to pounds per acre Correct conclusion	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
17.5 (a)	$\begin{aligned} & 12 \times 6=72 \text { painter days' } \\ & 72 \div 18=4 \text { days } \end{aligned}$	$12 \times 6 \div 18$, or equivalent Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.5 (b)	$72 \div 3=24$ painters	$12 \times 6 \div 3$, or equivalent Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.5 (c)		Correct shape Graph approaches (but does not touch) both sets of axes.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.6 (a)	$\begin{aligned} & T=\frac{k}{W} \\ & 5=\frac{k}{4} \\ & \Rightarrow k=20 \\ & T=\frac{20}{W} \end{aligned}$	Setting up a formula to represent the inverse relationship Correct constant k Correct answer	

Question	Answer	Extra information	Marks
17.6 (b)	$T=\frac{20}{8}=2.5$		2
17.7 (a)	$\begin{aligned} & M=k H^{2} \\ & 500=k \times 0.6^{2} \\ & \Rightarrow k=\frac{12500}{9} \\ & M=\frac{12500 H^{2}}{9} \end{aligned}$	Setting up a formula to represent the inverse relationship Correct constant k Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17.7 (b)	$M=\frac{12500 \times 1.5^{2}}{9}=3125 \mathrm{~kg}$		2
17.8	f must be inversely proportional to h^{2} : $\begin{aligned} & f=\frac{k}{h^{2}} \Rightarrow 6=\frac{k}{0.5^{2}} \Rightarrow k=\frac{3}{2} \\ & \Rightarrow f=\frac{3}{2 h^{2}} \end{aligned}$	1 mark for describing the proportionality of f and h. 1 mark for $f=\frac{k}{h^{2}}$ or equivalent 1 mark for correct value of k 1 mark for correct final answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17.9	$\begin{aligned} & \text { Original density }=\frac{30}{100}=0.3 \mathrm{~kg} / \mathrm{cm}^{3} \\ & \text { New density }=\frac{70}{140}=0.5 \mathrm{~kg} / \mathrm{cm}^{3} \\ & \% \text { increase }=\frac{0.5-0.3}{0.3} \times 100 \%=66.6 \% \end{aligned}$ Pat is correct	Finding original and new density Obtaining a \% increase	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

OXFORD REVISE

Question	Answer	Extra information	Marks
17.10	$\begin{aligned} & f=k \sqrt{g} \\ & 2=k \sqrt{324} \\ & k=\frac{1}{9} \\ & \Rightarrow f=\frac{\sqrt{g}}{9} \end{aligned}$ Now, $\begin{aligned} & g=\frac{K}{h^{2}} \\ & 225=\frac{K}{0.2^{2}} \\ & K=9 \\ & \Rightarrow g=\frac{9}{h^{2}} \\ & f^{2}=\frac{g}{81}=\frac{1}{81}\left(\frac{9}{h^{2}}\right)=\frac{1}{9 h^{2}} \\ & f=\sqrt{\frac{1}{9 h^{2}}}=\frac{1}{3 h} \end{aligned}$	$\begin{aligned} & f=k \sqrt{g} \\ & g=\frac{K}{h^{2}} \end{aligned}$ Substitutes values of f and g to find k, or values of g and h to find K. k or K correct Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
17.11	$\begin{aligned} & v=\frac{k}{w^{2}} \\ & 2=\frac{k}{9 x^{2}} \\ & k=18 x^{2} \\ & \Rightarrow v=\frac{18 x^{2}}{w^{2}} \end{aligned}$ When $w=5 x$: $v=\frac{18 x^{2}}{25 x^{2}}=\frac{18}{25}=0.72$	$v=\frac{k}{w^{2}}$ Substituting $v=2$ and $w=3 \mathrm{x}$ correctly Complete method leading to correct answer	
17.12	$\begin{aligned} & 1.98 \mathrm{~km}=1980 \mathrm{~m} \\ & \text { Lower Bound for distance }=1975 \mathrm{~m} \\ & \text { Upper Bound for distance }=1985 \mathrm{~m} \\ & \text { Lower Bound for time }=57.5 \mathrm{~s} \\ & \text { Upper Bound for time }=62.5 \mathrm{~s} \\ & \text { Upper Bound for speed }=\frac{1985}{57.5}=34.521 \ldots \\ & \text { Lower Bound for speed }=\frac{1975}{62.5}=31.6 \end{aligned}$ $\text { Both round to } 30 \mathrm{~m} / \mathrm{s} \text { to } 1 \mathrm{sf}$	$\begin{aligned} & 1975 \text { or } 57.5 \\ & 1985 \text { or } 62.5 \end{aligned}$ Correct method for UB of speed of LB of speed $34.5217 \ldots$ and 31.6 correct Correct answer with explanation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
17.13	Egg without shell $=44.5 \mathrm{~g}$ 11% decrease means a multiplier of 0.89 Egg with shell $\times 0.89=44.5$ Therefore, egg with shell $=\frac{44.5}{0.89}=50 \mathrm{~g}$	Correct multiplier for 11\% decrease Sets up correct relationship between shell on and off Correct answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17.14	The ratio of their money is originally $2: 1$ So, the actual amount of money that each person has can be represented as $2 x$ and $1 x$, respectively. They each pay $£ 9$ for lunch, so they now have $2 x-9$ and $x-9$ pounds, respectively, and this is in the ratio of $5: 2$. Hence: $\frac{2 x-9}{x-9}=\frac{5}{2}$ $\begin{aligned} 5 x-45 & =4 x-18 \\ x & =27 \end{aligned}$ That means Ted started with $£ 27$, and Fred started with $£ 54$	Letting x and $2 x$ represent the original amounts Writing $x-9$ and $2 x-9$ as the current amounts Setting up the ratio equation $\frac{2 x-9}{x-9}=\frac{5}{2}$ Fully correct	

