

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 17 Compound measures and multiplicative reasoning

Question	Answer	Extra information	Marks
17.1	Rate = $\frac{\text{Volume}}{\text{time}}$ $20 = \frac{2400}{t}$ $t = \frac{2400}{20}$ $t = 120$ Time = 120 seconds	$2400 \div 20$ Correct answer, including units	1 1
17.2	Density = $\frac{\text{mass}}{\text{volume}} = \frac{38700}{5} = 7740 \text{kg/m}^3$	Convert g to kg Use of the formula for density Correct answer	1 1 1
17.3	$Speed = \frac{distance}{time}$ $47 = \frac{5.64}{t}$ $t = \frac{5.64}{47} = 0.12 \text{ hours}$ $0.12 \text{ hours} = 7.2 \text{ minutes}$ $0.2 \text{ minutes} = 12 \text{ seconds}$ Therefore, time is 7 minutes and 12 seconds	Convert to consistent units Attempt to use formula to find the time 0.12 hours Correct answer	1 1 1

Question	Answer	Extra information	Marks
17.4	France: $58\ 800 \times 1.15 = £67\ 620$ £67\ 620 \div 12 = £5635\ per\ acre Argentina: $4\ 520\ 000 \div 70.12 = £64\ 460.92$ £64\ 460.92 \div 15 = £4297.39\ per\ acre Lower cost per\ acre\ in Argentina	Convert to pounds per acre Correct conclusion	3 1
17.5 (a)	$12 \times 6 = 72$ painter days' $72 \div 18 = 4$ days	12 × 6 ÷ 18, or equivalent Correct answer	1 1
17.5 (b)	$72 \div 3 = 24$ painters	$12 \times 6 \div 3$, or equivalent Correct answer	1 1
17.5 (c)	No. of painters	Correct shape Graph approaches (but does not touch) both sets of axes.	1 1
17.6 (a)	$T = \frac{k}{W}$ $5 = \frac{k}{4}$ $\Rightarrow k = 20$ $T = \frac{20}{W}$	Setting up a formula to represent the inverse relationship Correct constant k Correct answer	1 1 1

Question	Answer	Extra information	Marks
17.6 (b)	$T = \frac{20}{8} = 2.5$		2
17.7 (a)	$M = kH^{2}$ $500 = k \times 0.6^{2}$ $\Rightarrow k = \frac{12500}{9}$ $M = \frac{12500H^{2}}{9}$	Setting up a formula to represent the inverse relationship Correct constant k Correct answer	1 1 1
	$M = \frac{12500 \times 1.5^2}{9} = 3125 \mathrm{kg}$		2
17.8	f must be inversely proportional to h^2 : $f = \frac{k}{h^2} \Rightarrow 6 = \frac{k}{0.5^2} \Rightarrow k = \frac{3}{2}$ $\Rightarrow f = \frac{3}{2h^2}$	1 mark for describing the proportionality of f and h . 1 mark for $f = \frac{k}{h^2}$ or equivalent 1 mark for correct value of k 1 mark for correct final answer	1 1 1 1
17.9	Original density = $\frac{30}{100}$ = 0.3 kg/cm ³ New density = $\frac{70}{140}$ = 0.5 kg/cm ³ % increase = $\frac{0.5 - 0.3}{0.3} \times 100\% = 66.6\%$ Pat is correct	Finding original and new density Obtaining a % increase	1

Question	Answer	Extra information	Marks
17.10	$f = k\sqrt{g}$ $2 = k\sqrt{324}$ $k = \frac{1}{9}$ $\Rightarrow f = \frac{\sqrt{g}}{9}$ Now, $g = \frac{K}{h^2}$ $225 = \frac{K}{0.2^2}$ $K = 9$ $\Rightarrow g = \frac{9}{h^2}$ $f^2 = \frac{g}{81} = \frac{1}{81} \left(\frac{9}{h^2}\right) = \frac{1}{9h^2}$ $f = \sqrt{\frac{1}{9h^2}} = \frac{1}{3h}$	$f = k\sqrt{g}$ $g = \frac{K}{h^2}$ Substitutes values of f and g to find k , or values of g and h to find K . k or K correct Correct answer	1 1 1 1

Question	Answer	Extra information	Marks
17.11	$v = \frac{k}{w^2}$ $2 = \frac{k}{9x^2}$ $k = 18x^2$ $\Rightarrow v = \frac{18x^2}{w^2}$ When $w = 5x$: $v = \frac{18x^2}{25x^2} = \frac{18}{25} = 0.72$	$v = \frac{k}{w^2}$ Substituting $v = 2$ and $w = 3x$ correctly Complete method leading to correct answer	1 1 1
17.12	1.98 km = 1980 m Lower Bound for distance = 1975 m Upper Bound for distance = 1985 m Lower Bound for time = 57.5 s Upper Bound for time = 62.5 s Upper Bound for speed = $\frac{1985}{57.5}$ = 34.521 Lower Bound for speed = $\frac{1975}{62.5}$ = 31.6 Both round to 30 m/s to 1 sf	1975 or 57.5 1985 or 62.5 Correct method for UB of speed of LB of speed 34.5217 and 31.6 correct Correct answer with explanation	1 1 1

Question	Answer	Extra information	Marks
17.13	Egg without shell = 44.5 g 11% decrease means a multiplier of 0.89 Egg with shell $\times 0.89 = 44.5$ Therefore, egg with shell = $\frac{44.5}{0.89} = 50$ g	Correct multiplier for 11% decrease Sets up correct relationship between shell on and off Correct answer	1 1 1
17.14	The ratio of their money is originally $2:1$ So, the actual amount of money that each person has can be represented as $2x$ and $1x$, respectively. They each pay £9 for lunch, so they now have $2x-9$ and $x-9$ pounds, respectively, and this is in the ratio of $5:2$. Hence: $\frac{2x-9}{x-9} = \frac{5}{2}$ $5x-45 = 4x-18$ $x = 27$ That means Ted started with £27, and Fred started with £54	Letting x and $2x$ represent the original amounts Writing $x-9$ and $2x-9$ as the current amounts Setting up the ratio equation $\frac{2x-9}{x-9} = \frac{5}{2}$ Fully correct	1 1 1