

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 14 Non-linear real-life graphs

14.1 (b)The area under the curve represents the distance travelled by the particle in metres.Correct answer, mentioning distance114.1 (c)The trapeziums all sit under the curve, and therefore underestimate the area.Correct explanation114.1 (c)The trapeziums all sit under the curve, and therefore underestimate the area.Correct explanation114.2 (a) $1 = \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{8} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{8} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{8} + \frac{1}{1} + \frac{1}{1}$	Question	Answer	Extra information	Marks
14.1 (c) the area. 14.1 (c) the area. 14.2 (a) $1^{9} \xrightarrow{0}{0}{0}{0}{1}{1}{2}{2}{3}{4}{5}{6}{6}{7}{7}{8}{x}{7}{1}{1}{1}{2}{1}{3}{1}{1}{1}{1}{1}{2}{1}{3}{1}{1}{1}{1}{1}{1}{2}{1}{3}{1}{1}{1}{1}{1}{1}{1}{2}{1}{3}{1}{1}{1}{1}{1}{1}{1}{1}{2}{1}{3}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}$	14.1 (b)		_	1
14.2 (a) Area of trapezium $2 = \frac{1}{2}(9.9+8.6) \times 1 = 9.25$ Area of trapezium $3 = \frac{1}{2}(8.6+5.5) \times 1 = 7.05$ Finding the correct area for one 1 Finding the correct area for one 1 trapezium Finding the correct area for the 1 three trapeziums Correct answer 1	14.1 (c)	•	Correct explanation	1
$\int \int dt $	14.2 (a)	$\int_{1}^{9} \int_{1}^{9} \int_{1}^{1} \int_{2}^{1} \int_{3}^{1} \int_{4}^{1} \int_{1}^{2} \int_{3}^{1} \int_{4}^{1} \int_{5}^{1} \int_{6}^{1} \int_{7}^{1} \int_{8}^{1} \int_{x}^{1} \int_{1}^{1} \int_{1}^{2} \int_{3}^{1} \int_{4}^{1} \int_{5}^{1} \int_{6}^{1} \int_{7}^{1} \int_{8}^{1} \int_{x}^{1} \int_{1}^{1} \int_{1$	trapezium Finding the correct area for the three trapeziums	1

OXFORD REVISE © Oxford University Press 2023. ISBN 9781382039833 go.oup.com/oxfordrevise

Question	Answer	Extra information	Marks
14.2 (b) (i)	$Area of trapezium 1 = \frac{1}{2}(2.8 + 1.4) \times 1 = 2.1$ Area of trapezium 3 = $\frac{1}{2}(1.4 + 0.7) \times 1 = 1.05$ Total area (total distance) = 7.3 m	Finding the correct area for one trapezium Finding the correct area for the three trapeziums Correct answer	1 1 1

Question	Answer	Extra information	Marks
14.2 (b) (ii)	This is an overestimate because the trapeziums lie slightly above the curve	overestimate, with reason	1
14.3 (a)	$\int_{10}^{y} \int_{10}^{y} \int_{20}^{x} f(seconds)$ Acceleration = gradient of the tangent at a point When $t = 5$, gradient = $\frac{3}{4} = 0.75$ The acceleration at $t = 5$ is 0.75 m/s ²	Drawing a line with the correct slope at the point on the curve where $t = 5$ Attempt to find gradient here Answer between 0.7 and 0.8	1 1 1
14.3 (b) (i)	Width of each strip = 2.5 Area of trapezium $1 = \frac{1}{2}(9.1+9.0) \times 2.5 = 22.625$ Area of trapezium $2 = \frac{1}{2}(9.0+7.2) \times 2.5 = 20.25$ Total area = 43	Using strips of width 2.5 Using correct formula for the area of either trapezium Finding the area of each trapezium Correct answer	1 1 1 1
14.3 (b) (ii)	It represents the distance travelled, in metres, between 15 and 20 seconds.	"Distance" mentioned	1

Question	Answer	Extra information	Marks
14.4 (a)	Weeks 3, 5, 7 and 9		3
14.4 (b)	9 and 12	The slope is the least steep here	1
14.4 (c)	2 cm growth in 2 weeks means 1 cm per week		1
14.5	Left to right in table: B, A, C	One correct All correct	1 1
14.6 (a)	$Average speed = gradient of the chord = \frac{20-0}{2-0} = 10 \text{ m/s}$	Chord drawn, or an attempt to find the gradient of the chord Correct answer	1 1

Question	Answer	Extra information	Marks
14.6 (b)	Speed = gradient of the tangent $\approx \frac{10-0}{1.5-0.5} = 10 \text{ m/s}$	Tangent drawn Method to find the gradient of the tangent Answer between 9.5 and 10.5	1 1 1
14.7 (a)	Average acceleration = gradient of chord = $\frac{215-0}{0.5-0} = 430 \text{ km/h}^2$	Chord drawn, or an attempt at the gradient Correct answer	1 1
14.7 (b)	The train starts to slow down (decelerate)		1
14.7 (c)	Acceleration = gradient of tangent $\approx \frac{190-290}{2.5-1.5} = -100$ This means the train is decelerating at 100 km/h ²	Tangent drawn Method to find the gradient of the tangent Answer between 95 and 105	1 1 1

Question	Answer	Extra information	Marks
14.8	All exponential graphs of the form $y = k^x$, where k is a positive constant, pass through the point with coordinates (0, 1). When $k > 1$, the graph will demonstrate exponential growth , and when $k < 1$ it demonstrates exponential decay .	1 mark for each	3
14.9	(9, 14)		1