

Oxford Revise | AQA GCSE Maths Higher | Answers

Chapter 11 Solving simultaneous equations

Question	Answer	Extra information	Marks
11.1	The point of intersection is approximately (2.3, 1.7), so the solution is $x = 2.3, y = 1.7$	x is close to 2.3 y is close to 1.7	1 1
11.2	The line to draw is $y = x$ y y y y y y y	Line $y = x$ drawn Correct answer	1 1
11.3 (a)	Add the equations to get $2x = 22$ Thus $x = 11$ Substitute this into either equation to get $y = 3$	Adding or subtracting to eliminate one variable x = 11 y = 3	1 1 1

Question	Answer	Extra information	Marks
11.3 (b)	Subtract the first equation from the second to get 5y = 10 Thus $y = 2$ Substitute this into either equation to get x = 4	Eliminating one variable y = 2 x = 4	1 1 1
11.3 (c)	Multiply the second equation by 2 and then subtract from the first to get 3y=15 Thus $y=5$ Substitute this into either equation to get x=3	Eliminating one variable y = 5 x = 3	1 1 1
11.3 (d)	Multiply the first equation by 2 and then subtract from the second to get 6x = 6 Thus $x = 1$ Substitute this into either equation to get y = 0.5	Eliminating one variable x = 1 y = 0.5	1 1 1
11.4 (a)	Multiply the first equation by 3, the second equation by -2, and then add to get: 19y = 57 Thus $y = 3$ Substitute this into either equation to get x = -2	Correct equation in either <i>x</i> or <i>y x</i> solution <i>y</i> solution	1 1 1

Question	Answer	Extra information	Marks
11.4 (b)	Multiply the first equation by 5, the second equation by -2, and then add to get: -33y = 66 Thus $y = -2$ Substitute this into either equation to get x = -1	Correct equation in either <i>x</i> or <i>y x</i> solution <i>y</i> solution	1 1 1
11.4 (c)	Multiply the first equation by 2, the second equation by -3, and then add to get: -20y = -15 Thus $y = 0.75$ Substitute this into either equation to get x = 2	Correct equation in either <i>x</i> or <i>y</i> <i>x</i> solution <i>y</i> solution	1 1 1
11.4 (d)	Multiply the first equation by 5, the second equation by -6, and then add to get: -38y = 57 Thus $y = -1.5$ Substitute this into either equation to get x = 0.5	Correct equation in either <i>x</i> or <i>y x</i> solution <i>y</i> solution	1 1 1
11.5 (a)	a = adult ticket price c = child ticket price a + 3c = 39 2a + 4c = 62	One equation, with any variable letters Both equations	1 1
11.5 (b)	Solve simultaneously to get: Adult ticket = ± 15 , child ticket = ± 8	Correct equation in either <i>a</i> or <i>c</i> <i>a</i> solution <i>c</i> solution	1 1 1

Question	Answer	Extra information	Marks
11.6	Let <i>a</i> be the mass of an apple, and <i>s</i> be the mass of a satsuma. 20a + 30s = 4050 (1) 12a + 15s = 2205 (2) (2) × 2: $24a + 30s = 4410$ (3) (3) - (1): $4a = 360$; $a = 90$ Substituting into (2): 1080 + 15s = 2205; $15s = 1125$; $s = 75The mass of an apple is 90 g and the mass of a satsumais 75 g$	Correct simultaneous equations Correct equation in either <i>a</i> or <i>s</i> Apple mass of 90 g Satsuma mass of 75 g	1 1 1 1
11.7	$2^{x+y} = 64 = 2^{6}$ x + y = 6 $2^{x-y} = 4 = 2^{2}$ x - y = 2 Solve simultaneously to get $x = 4, y = 2$	Attempting to rewrite 64 and 2 with base 2 Either equation correct Attempting to solve simultaneously Correct values for x and y	1 1 1 1

Question	Answer	Extra information	Marks
11.8	x = 1, y = 1 and x = 4, y = 4	Correct drawing of $y = (x - 2)^2$ Correct drawing of $y = x$ 1 and 1 4 and 4	1 1 1 1
11.9 (a)	$x^{2} + 3x - 2 = 3 - x$ $x^{2} + 4x - 5 = 0$ (x + 5)(x - 1) = 0 x = -5 or x = 1	Attempt to form an equation in x only Rearranging to make RHS = 0 Factorising correctly Correct answer	1 1 1 1
11.9 (b)	$2(-2y)^{2} + y^{2} = 9$ $9y^{2} = 9$ $y = \pm 1$ When $y = 1, x = -2$ When $y = -1, x = 2$	Attempt to form an equation in y only Rearranging to make RHS = 0 Factorising correctly Correct answer	1 1 1 1

Question	Answer	Extra information	Marks
11.10 (a)	(-1, -14) and $(6, 0)$	Line $y = 2x - 12$ correctly drawn (-1, -14) (6, 0)	1 1 1
11.10 (b)	(-2.5, 0) and $(5.5, 0)$	Draw the line $y = -4$ Estimate one intersection of the quadratic and $y = -4$ Estimate both intersection points	1 1 1
11.11	$11+2x \ge 5x-1$ $12 \ge 3x$ $x \le 4$	Solve the inequality Show the inequality correctly on a number line	1 1
11.12	$6x^{2} - 7x + 20 > 0$ Factorise as $(3x - 4)(2x + 5) > 0$ Roots are $x = \frac{4}{3}$, and $x = -\frac{5}{2}$ The quadratic is U shaped so it is positive (> 0) when $x > \frac{4}{3}$, and $x < -\frac{5}{2}$ In set notation: $\left\{x : x > \frac{4}{3} \cup x < -\frac{5}{2}\right\}$	Quadratic correctly factorised Roots found Inequalities correctly identified Fully correct answer, in set notation	1 1 1 1