Oxford Revise | AQA GCSE Maths Foundation | Answers

Chapter 20 Perimeter, area, and volume

Question	Answer	Extra information	Marks
20.1 (a)	Line drawn with length 5.4 cm		1
20.1 (b)	The side measurements are $51 \mathrm{~mm}, 85 \mathrm{~mm}$ and 108 mm . The perimeter is 244 mm .	Correct length of any line Correct answer	$\overline{1}$
20.2 (a)	Area $=\frac{1}{2} \times(6+9) \times 4=30 \mathrm{~cm}^{2}$	Correct calculation Correct answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
20.2 (b)	Area $=\frac{1}{2} \times 6 \times 4=12 \mathrm{~cm}^{2}$	Correct calculation Correct answer	1
20.2 (c)	Area $=25 \times 12=300 \mathrm{~cm}^{2}$	Correct calculation Correct answer	1
20.3	Area $=6 \times 7=42 \mathrm{~cm}^{2}$	Correct formula used Correct answer	$\overline{1}$
20.4	Area of cross-section $=180 \div 20=9 \mathrm{~cm}^{2}$		1
20.5	Volume $=40=2 \times 5 \times$ height Therefore, height $=4 \mathrm{~cm}$ Surface area $=2(2 \times 4)+2(4 \times 5)+2(5 \times 2)=76 \mathrm{~cm}^{2}$	Height of cuboid $=4 \mathrm{~cm}$ Method to find surface area 76 Answer including units	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$

Question	Answer	Extra information	Marks
20.6	Length of rectangle $=12 \mathrm{~cm}$ $\text { Perimeter }=2(6+12)=36 \mathrm{~cm}$	12 cm Correct answer	
20.7	$2 \times 125+2(x-4)=380$ Solve to find that $x=69 \mathrm{~mm}$ Perimeter of $£ 10$ note $=2 \times 132=2 \times 69=402 \mathrm{~mm}$	Form an equation in x for the perimeter of the $£ 5$ note 69 Correct answer	1 1
20.8	The area of a kite A is given by $A=\frac{p q}{2}$. where p and q are the diagonals. $A=\frac{4 \times 9}{2}=18 \mathrm{~cm}^{2}$	Correctly substituting $p=4 \mathrm{~cm}$ and $q=9 \mathrm{~cm}$ into kite area formula Correct answer	
20.9 (a)	Missing side length $=11-3=8 \mathrm{~m}$ Perimeter $=4+8+5+8+11=36 \mathrm{~cm}$	Missing side length Correct answer	
20.9 (b)	$\begin{aligned} & \text { Triangle area }=\frac{1}{2} \times 3 \times 4=6 \mathrm{~m}^{2} \\ & \text { Rectangle area }=4 \times 11=44 \mathrm{~m}^{2} \\ & \text { Total area }=50 \mathrm{~m}^{2} \end{aligned}$	Area of the triangle Area of the rectangle Correct answer	1

Question	Answer	Extra information	Marks
20.10	The hexagon can be divided into two identical trapeziums. Area of one trapezium = $\frac{1}{2} \times(4.2+6.7) \times 5=27.25$ Area of hexagon $=2 \times 27.25=54.5 \mathrm{~cm}^{2}$	Area of trapezium Correct answer Award full marks for any method that involves dividing the hexagon into triangles	
20.11 (a)	Volume $=20 \times 30 \times 10=6000 \mathrm{~mm}^{3}$	$20 \times 30 \times 10$ Correct answer	1
20.11 (b)	Surface area $\begin{aligned} & =2[(20 \times 30)+(30 \times 10)+(10 \times 20)] \\ & =2200 \mathrm{~mm}^{2} \end{aligned}$	$2[(20 \times 30)+(30 \times 10)+(10 \times 20)]$ Correct answer	1

Question	Answer		Extra information	Marks
20.12	Volume $=8 \times 25=200 \mathrm{~m}^{3}$		200 Units included	
20.13			$3 x y$ or $2 x y$ Correct answer, no matter how the shape is divided	1
20.14	$360 \div 24=15$ The polygon has 15 sides		Attempt to divide 360 by 24 Correct answer	
20.15 (a)	False; 27 is 3-cubed			1
20.15 (b)	False; 2 and 6 are both factors of 12			1
20.15 (c)	True; 6 and 15 are the only triangular numbers			1

