

Oxford Revise | AQA GCSE Maths Foundation | Answers

Chapter 18 Interior and exterior angles

Question	Answer	Extra information	Marks
18.1	Pentagon		1
18.2	The sum of the exterior angles of a polygon is 360° . $360 \div 60 = 6$ The shape is a regular hexagon	$360 \div 60 = 6$ Correct answer	1 1
18.3	Interior angle sum = $(6 - 2) \times 180 = 720^{\circ}$ 720 - $(141 + 159 + 83 + 90 + 147) = 100^{\circ}$	$(6-2) \times 180$ Subtracting the sum of the five angles from 720 Correct answer	1 1 1
18.4	$(8-2) \times 180 = 1080^{\circ}$ $1080 \div 8 = 135^{\circ}$ (= interior angle in regular octagon) Using angles at a point add to 360: x = 360 - 60 (equilateral triangle) - 135 (interior angle of octagon) - 90 (square) = 75^{\circ}	$(8-2) \times 180$ $1080 \div 8 = 135^{\circ}$ identifying angles of 60° and 90° Correct final answer	1 1 1 1
18.5	Exterior angle would be $180 - 80 = 100^{\circ}$ $360 \div 100 = 3.6$ A regular polygon cannot have 3.6 sides, so Sophia is correct.	180 - 80 $360 \div 100 = 3.6$ Correct conclusion	1 1 1

Question	Answer	Extra information	Marks
18.6	Each exterior angle = $360 \div 5 = 72^{\circ}$ So, each interior angle = $180 - 72 = 108^{\circ}$	Either find the exterior angle and use angles on a straight line add to 180, OR find the sum of interior angles and divide by 5	1 1
18.7 (a)	$x = 360 \div 12 = 30^{\circ}$	360 ÷ 12 Correct answer	1 1
18.7 (b)	$y = (180 - 30) \div 2 = 75^{\circ}$	Subtract x from 180 and divide by 2 Correct answer	1 1
18.7 (c)	$z = (180 - 2 \times 75) = 30^{\circ}$	Subtract twice the size of angle y from 180 Correct answer	1 1
18.8	n = 1080 m = 1440 m - n = 1440 - 1080 = 360	Calculating the value of <i>n</i> Calculating the value of <i>m</i> Correct answer	1 1 1
18.9	Sum of interior angles = 720° Let angle $PQR = x$. Then angle $STU = 2x$ 720 = 152 + x + 82 + 219 + 2x + 90 177 = 3x $x = 59^{\circ}$ Angle $STU = 2x = 118^{\circ}$	Sum of interior angles = $(6 - 2) \times 180$ Attempt to use $STU = 2 \times PQR$ Form an equation in x Attempt to solve for x Final answer	1 1 1 1

Question	Answer	Extra information	Marks
18.10 (a) and (b)	A 11 5 3 3 $HCF = 2 \times 5 = 10$ $LCM = 2 \times 2 \times 11 \times 2 \times 5 \times 3 \times 3 = 3960$	Venn diagram or alternative method HCF correct LCM correct	1 1 1
18.11 (a)	Pattern 4		1
18.11 (b) (i)	15 matchsticks		1
18.11 (b) (ii)	2 <i>n</i> +1	Identifying an increase of 2 per pattern Correct answer	1
18.11 (c)	Darren uses the formula $2n+1$ with $n=100$	Correct explanation	1