Oxford Revise | AQA GCSE Maths Foundation| Answers

Chapter 13 Sequences

Question	Answer	Extra information	Marks
13.1 (a)	Add $6,49,61$, Arithmetic	One mark for each correct answer	4
13.1 (b)	Multiply by $2,16,64$, Geometric	One mark for each correct answer	4
13.1 (c)	Divide by $2,1.25,0.3125$, Geometric	One mark for each correct answer	4
13.1 (d)	Subtract $3,8,2$, Arithmetic	One mark for each correct answer	4
13.2 (a)	Nick is correct because all terms in the sequence end in either 2 or 7	The sequence continues as $32,37,42,47,52,57, \ldots$	Continue the sequence until at least the $10^{\text {th }}$ term. Correct answer
13.2 (b)	1 The 10 th term is 57	1	
13.3 (a)	Each pattern has 2 more dots than the previous pattern. Pattern 5 will have $7+2+2$ =11 dots		1
13.3 (b)	Add 2	Correct answer and explanation	1
13.3 (c)	No, all terms are odd.	1	

Question	Answer	Extra information	Marks
13.4	Arithmetic sequence means a constant difference between adjacent terms. Thus, the constant is $15-9=6$, and so $a=3$ and $b=21$	$\begin{aligned} & a=3 \\ & b=21 \end{aligned}$	
13.5 (a)	First four terms: 2, 5, 8, 11 Term-to-term rule: Add 3 Seventh term: 20 Hundredth term: 299	One mark for each correct answer	4
13.5 (b)	First four terms: 7, 12, 17, 22 Term-to-term rule: Add 5 Seventh term: 37 Hundredth term: 502	One mark for each correct answer	4
13.5 (c)	First four terms: 5, 4, 3, 2 Term-to-term rule: Subtract 1 Seventh term: - Hundredth term: -94	One mark for each correct answer	4
13.5 (d)	First four terms: 7, 4, 1, -2 Term-to-term rule: Subtract 3 Seventh term: - 11 Hundredth term: -290	One mark for each correct answer	4

Question	Answer	Extra information	Marks
13.6 (a)	$6,9,14,21$	Two terms correct All terms correct	1 1
13.6 (b)	$-1,0,3,8$	Two terms correct All terms correct	1 13.6 (c)
$9,6,1,-6$	Two terms correct All terms correct		
13.7 (a)	$8 n+3=51$ $n=6$ $n=6$ The 6 th term is 51	Equation set up correctly Correct answer	1
13.7 (b)	$8 n+3=64$ $8 n=61$ 61 is not evenly divisible by 8, so 64 is not in the sequence.	Equation set up correctly Correct explanation	

Question	Answer	Extra information	Marks
13.7 (c)	$\begin{aligned} & \hline 8 n+3>100 \\ & 8 n>97 \\ & n>12.125 \end{aligned}$ n must be a whole number, so $n=13$. $13 \text { th term }=8(13)+3=107$ 107 is the first in the sequence to exceed 100.	Inequality set up $13^{\text {th }} \text { term }$ Correct answer	1 1
13.8 (a)	Term-to-term rule: Add 6 Position-to-term rule: $6 n+11$ Tenth term: 71	One mark for each correct answer	3
13.8 (b)	Term-to-term rule: Add 3 Position-to-term rule: $3 n-4$ Tenth term: 26	One mark for each correct answer	3
13.8 (c)	Term-to-term rule: Subtract 3 Position-to-term rule: 7-3n Tenth term: -23	One mark for each correct answer	3
13.8 (d)	Term-to-term rule: Subtract 5 Position-to-term rule: $25-5 n$ Tenth term: -25	One mark for each correct answer	3

Question	Answer	Extra information	Marks
13.8 (e)	Term-to-term rule: Add 0.5 Position-to-term rule: $0.5 n+2.5$ Tenth term: 7.5	One mark for each correct answer	
13.9 (a)	The sequence starts: 3, 7,11 The term-to-term rule is: Add 4 The nth term is $4 n-1$, because the terms of the sequence are each 1 less than the 4-times table.	Identifying the sequence Correct answer	3
13.9 (b)	$4 \times 40-1=159$ There will be 159 dots in Pattern 40.	Substituting 40 into the expression Correct answer	1
13.10	Emily has confused the term-to-term rule (add 5) with the nth term rule. Keisha is correct.	Correct explanation	1
13.11	The sequence is arithmetic. $5, \ldots, 11, \ldots$. There are two "jumps" from 5 to 11, so each jump must be 3, making the sequence: $5,8,11$ The nth term of the sequence is $3 n+2$	Sequence identified Correct answer	1
13.12 (a)	The square numbers	1	
13.12 (b)	The Fibonacci sequence	1	
13.12 (c)	The cube numbers	1	

Question	Answer	Extra information	Marks
13.13 (a)	16		1
13.13 (b)	n^{2}		1
	Each term is the sum of the previous two terms: 6 th term $=10+16=26$ 13.14 (a) 7 th term $=16+26=42$ 8th term $=26+42=68$ The 8th term is 68	Sequence continued for more than one extra term Correct answer	1
13.14 (b)(i)	The next two terms are $5 x(2 x+3 x)$ and $8 x(3 x+5 x)$	$5 x$ 13.14	$8 x=32$ $x=4$ (b)(ii)
The first term is 4.	$8 x$	1	

Question	Answer	Extra information	Marks
13.15	$\begin{aligned} & \left(\frac{1}{2}\right)^{1}=\frac{1}{2} \\ & \left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\ & \left(\frac{1}{2}\right)^{3}=\frac{1}{8} \end{aligned}$ The first three terms are: $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$	Attempt to use $\left(\frac{1}{2}\right)^{n}$ with $n=1,2,3$ Correct sequence	1
13.16	$\begin{aligned} & \frac{7}{8}+\frac{1}{4}=\frac{7}{8}+\frac{2}{8}=\frac{9}{8} \\ & \frac{9}{8} \div 2=\frac{9}{16} \end{aligned}$ $\frac{9}{16}$ is halfway between $\frac{1}{4}$ and $\frac{7}{8}$	$\begin{aligned} & \frac{7}{8}+\frac{1}{4} \\ & \frac{9}{8} \div 2 \\ & \frac{9}{16} \end{aligned}$	1
13.17	$\begin{aligned} \text { New price } & =53.76 \times 0.8 \\ & =43.008 \end{aligned}$ This does not agree with the label.	Use 0.8 as a multiplier Either multiply 53.76 by 0.8 or divide 44.80 by 0.8 Correct conclusion with correct reason	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

