

Oxford Revise | AQA GCSE Maths Foundation | Answers

Chapter 12 Simultaneous equations

Question	Answer	Extra information	Marks
12.1	The line to draw is $y=x$ The two lines intersect at (2,2), so $x=2$ and $y=2$	Line $y=x$ correctly drawn Correct coordinates of point of intersection	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
12.2	The point of intersection is approximately $(2.3,1.7)$ so $x=2.3, y=1.7$	$\begin{array}{\|l} \hline x \text { is (close to) } 2.3 \\ y \text { is (close to) } 1.7 \\ \hline \end{array}$	

Question	Answer	Extra information	Marks
	Add the two equations to give $2 x=22$ Thus, $x=11$ Substitute this into either equation to find y. $11+y=14$ $y=3$	Adding or subtracting the equations to eliminate either x or y. Correct answer	1
12.3 (b)	Subtract one equation from the other to give $5 y=10$ Thus, $y=2$ Substitute this into either equation to find x. $2 x-4=4$ $x=4$	Subtracting one equation from the other to eliminate y. Correct answer for x. Correct answer for y.	1

Question	Answer	Extra information	Marks
12.3 (c)	$\begin{array}{r} 4 x+5 y=37 \\ 2 x+y=11 \tag{2} \end{array}$ Multiply (2) by 2 , and then subtract from (1): $\begin{aligned} 4 x+5 y & =37 \\ 4 x+2 y & =22 \\ \hline 3 y & =15 \\ y & =5 \end{aligned}$ Substitute $y=5$ into either equation to solve for x. $\begin{aligned} 4 x+25 & =37 \\ 4 x & =12 \\ x & =3 \end{aligned}$	Correct equation in either x or y. Correct answer for x. Correct answer for y.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
12.3 (d)	$\begin{gather*} 3 x-2 y=2 \\ 12 x-4 y=10 \tag{2} \end{gather*}$ Multiply (1) either by 4 or by 2 to eliminate x or y, respectively. $\begin{aligned} 12 x-8 y & =8 \\ 12 x-4 y & =10 \\ \hline-4 y & =-2 \\ y & =0.5 \end{aligned}$ Substitute $y=5$ into either equation to solve for x. $\begin{aligned} 3 x-1 & =2 \\ 3 x & =3 \\ x & =1 \end{aligned}$	Correct equation in either x or y. Correct answer for x. Correct answer for y.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	
12.4 (a)	$2 x+5 y=11$ (1) $3 x-2 y=-12$ (2) Multiply both equations by suitable constants to eliminate one variable. For example: $6 x+15 y=33$ $6 x-4 y=-24$ $19 y=57$ $y=3$		
	Correct equation in either x or y. Substitute $y=3$ into either equation to solve for x. $2 x+15=11$ $2 x=-4$ $x=-2$	Correct answer for y.	1

Question	Answer	Extra information	Marks
12.4 (b)	$\begin{align*} 2 x-7 y & =12 \tag{1}\\ 5 x-y & =-3 \tag{2} \end{align*}$ Multiply both equations by suitable constants to eliminate one variable. For example: $\begin{aligned} 10 x-35 y & =60 \\ 10 x-2 y & =-6 \\ \hline-33 y & =66 \\ y & =-2 \end{aligned}$ Substitute $y=-2$ into either equation to solve for x. $\begin{aligned} 2 x+14 & =12 \\ 2 x & =-2 \\ x & =-1 \end{aligned}$	Correct equation in either x or y. Correct answer for x. Correct answer for y.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
12.4 (c)	$\begin{align*} 3 x+8 y & =12 \\ 2 x+12 y & =13 \tag{2} \end{align*}$ Multiply both equations by suitable constants to eliminate one variable. For example: $\begin{aligned} 6 x+16 y & =24 \\ 6 x+36 y & =39 \\ \hline 20 y & =15 \\ y & =0.75 \end{aligned}$ Substitute $y=0.75$ into either equation to solve for x $\begin{aligned} 3 x+6 & =12 \\ 3 x & =6 \\ x & =2 \end{aligned}$	Correct equation in either x or y. Correct answer for x. Correct answer for y.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
12.4 (d)	$\begin{align*} & 6 x-4 y=9 \\ & 5 x+3 y=-2 \tag{2} \end{align*}$ Multiply both equations by suitable constants to eliminate one variable. For example: $\begin{aligned} 18 x-12 y & =27 \\ 20 x+12 y & =-8 \\ \hline 38 x & =19 \\ x & =0.5 \end{aligned}$ Substitute $x=0.5$ into either equation to solve for y $\begin{aligned} 3-4 y & =9 \\ -4 y & =6 \\ y & =-1.5 \end{aligned}$	Correct equation in either x or y. Correct answer for x. Correct answer for y.	
12.5 (a)	Let $a=$ cost of an adult ticket, and $c=$ cost of child ticket. $\begin{aligned} a+3 c & =39 \\ 2 a+4 c & =62 \end{aligned}$	First equation, using any variables. Second equation	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
12.5 (b)	Solve simultaneously to get $a=15, c=8$ Thus, an adult ticket costs $£ 15$ and a child's ticket costs $£ 8$	Correct equation in either a or c. Adult ticket is $£ 15$ Child's ticket is $£ 8$	1

Question	Answer	Extra information	Marks
12.6	Let $a=$ mass of an apple, and $s=$ mass of a satsuma. $\begin{aligned} 20 a+30 s & =4050 \\ 12 a+15 s & =2205 \end{aligned}$ Solve simultaneously to get $a=90, s=75$ Thus, the mass of an apple is 90 g and the mass of a satsuma is 75 g	Correct simultaneous equations Correct equation in either a or s. Apple's mass $=90 \mathrm{~g}$ Satsuma's mass $=75 \mathrm{~g}$	1
12.7	$\begin{array}{r} 3 x+2 y=9 \\ x+y=4 \tag{2} \end{array}$ Multiply the second equation by 2 or -2 to eliminate y (or by 3 or -3 to eliminate x) For example: $\begin{aligned} 3 x+2 y & =9 \\ -3 x-3 y & =-12 \\ \hline-y & =-3 \\ y & =3 \end{aligned}$ Substitute $y=3$ into either equation to solve for x $\begin{aligned} x+3 & =4 \\ x & =1 \end{aligned}$	Either equation stated Correct equation in either x or y. $\begin{aligned} & x=1 \\ & y=3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question	Answer	Extra information	Marks
12.8	Rearrange the second equation as $a-b=4$, then subtract from the first equation to eliminate b : $\begin{aligned} 2 a-b & =7 \\ a-b & =4 \\ \hline a & =3 \end{aligned}$ Substitute this value into either equation to solve for b. Thus, $b=-1$	Rearrange the 2nd equation correctly and then eliminates either a or b. $\begin{aligned} & a=3 \\ & b=-1 \end{aligned}$	1
12.9	Let the two numbers be x and y. $\begin{aligned} & x+y=120 \\ & x-y=50 \end{aligned}$ Add the two equations to eliminate y. $\begin{aligned} 2 x & =170 \\ x & =85 \end{aligned}$ Then solve for y. $\begin{aligned} 85+y & =120 \\ y & =35 \end{aligned}$	Attempt to form simultaneous equations Eliminates x or y. 35 85	1

Question	Answer	Extra information	Marks
12.10	$\begin{aligned} p+q+3 q+p+q+2 p & =22 \\ 4 p+5 q & =22 \end{aligned}$ Opposite sides are equal in length so: $2 p=3 q$ which can be rearranged to $2 p-3 q=0$ Simultaneous equations: $\begin{align*} & 4 p+5 q=22 \tag{1}\\ & 2 p-3 q=0 \tag{2} \end{align*}$ Multiply (2) by 2 and then subtract the result from (1): $\begin{aligned} 4 p+5 q & =22 \\ 4 p-6 q & =0 \\ \hline 11 q & =22 \\ q & =2 \end{aligned}$ Substitute this value of q into either (1) or (2) to find that $p=3$	Attempts to form an equation for the perimeter. Realises that $2 p=3 q$ and rearranges this. Eliminates either p or q. $\begin{aligned} & q=2 \\ & p=3 \end{aligned}$	1

Questions referring to previous content				
12.11	$12 \geq 3 x$, so $x \leq 4$	$\begin{aligned} & 12 \geq 3 x \\ & x \leq 4 \end{aligned}$ Number line with filled circle at 4 and line indicating everything to the left of 4 .	1 1 1	

