A Level OCR Physics

Chapter 9 Newton's laws of motion and momentum

Question	Answers	Extra information	Mark	AO spec reference
1(a)	In an elastic collision all the kinetic energy is conserved. The statement suggests that only a small amount of KE is lost / collision is either completely elastic or completely inelastic, it cannot be almost elastic		1 1	$\begin{aligned} & 3.5 .2 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	$\begin{aligned} & m=0.064 \mathrm{~kg} \\ & p=m v=0.064 \times 0.55=0.035 \end{aligned}$ $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 \\ & \text { AO1 } \end{aligned}$
(c)	$\mathrm{KE}=1 / 2 m v^{2}=1 / 20.064 \times 0.55^{2}=9.68 \times 10^{-3} \mathrm{~J}=9.7 \mathrm{~mJ}$ (to 2 s.f.)		1	$\begin{aligned} & 3.3 .2 \\ & \mathrm{AO} 1 \end{aligned}$
(d)	conservation of momentum stated or implied $\begin{aligned} & 0.035=m v \\ & v=1.1 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	Allow idea of ratios, halving mass will double velocity for same change in momentum	1 1	$\begin{aligned} & 3.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(e)	$\mathrm{KE}=1 / 2 m v^{2}=1 / 20.032 \times 1.1^{2}=0.019 \mathrm{~J}$ This is greater than the original ke/kinetic energy is not conserved so this is impossible.		1 1	$\begin{aligned} & 3.3 .2 \\ & \mathrm{AO} 2 \end{aligned}$
2(a)	kinetic energy is conserved		1	$\begin{aligned} & 3.5 .2 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	momentum before $=m u=2.0 \times 10^{-26} \mathrm{~kg} \times 500 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{OR}$ velocity after collision equal but opposite direction $\Delta m v=m v-(-m u)=2 \times 10^{-23}$ $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$	Allow change in velocity $=1000 \mathrm{~ms}^{-1}$ for a mark	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	$\begin{aligned} & \text { Distance }=2 \times 0.02=0.04 \mathrm{~m} \\ & \text { Time }=0.04 / 500=8 \times 10^{-5} \mathrm{~s} \end{aligned}$		1	$\begin{aligned} & 3.1 .1 \\ & \mathrm{AO} 2 \end{aligned}$

A Level OCR Physics

Chapter 9 Newton's laws of motion and momentum

Question	Answers	Extra information	Mark	AO spec reference
(d)	$\begin{aligned} & F=\Delta m v / \Delta t \\ & F=2 \times 10^{-23} / 8 \times 10^{-5} \mathrm{~s}=2.5 \times 10^{-19} \mathrm{~N} \end{aligned}$	allow e.c.f. from 2 b and 2 c	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(e)	$\begin{aligned} & P=F / A=2.5 \times 10^{-19} \mathrm{~N} / 0.02^{2}=6.25 \times 10^{-16}\left(\mathrm{~N} \mathrm{~m}^{-2}\right) \\ & \text { Number of molecules }=101000 / 6.25 \times 10^{-16}=1.62 \times 10^{20} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
3(a)	$W=m g=75 \times 9.81=740 \mathrm{~N}(736 \mathrm{~N})$		1	$\begin{aligned} & 3.2 .1 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	They are different types of force/should be the same type of force. Both forces act on the same body/Newton's third pairs act on different bodies.	Allow: The weight and normal reaction force just happen to be equal because there is no acceleration. Newton's third law pairs are equal under all circumstances.	1 1	$\begin{aligned} & 3.5 .1 \\ & \text { AO1 } \end{aligned}$
(c)	The person pulls the Earth towards him/her because of gravity.	description and direction needed for mark	1	$\begin{aligned} & 3.5 .1 \\ & \text { AO1 } \end{aligned}$
(d)	Graph starting at about 740 N Graph shows a dip down to lower value F then back up to 740 N Increase to higher value of F then back down to 740 N	Value not needed but should NOT start from zero Ignore shape of the dips can be curved or triangular	Max 3	$\begin{gathered} 3.5 .1 \\ \mathrm{AO} 2 \times 1 \\ \mathrm{AO} 3 \times 2 \end{gathered}$
4(a)	Same shape graph Inverted		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 \\ & \text { AO2 } \end{aligned}$
(b)	Area under graph $=$ impulse /change in momentum $\begin{aligned} & \left(0.6 \times 10^{-3} \times 0.5 \times 2.2 \times 10^{3}\right)+\left(2.2 \times 10^{3} \times 0.3 \times 10^{-3}\right)+\left(2.2 \times 10^{3} \times 0.5 \times\right. \\ & \left.0.6 \times 10^{-3}\right)=1.98 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		1 1	$\begin{aligned} & 3.5 .1 \\ & \text { AO2 } \end{aligned}$
(c)	Impulse $=$ change in momentum $1.98 \mathrm{~s}=0.14 \times v$		1	$\begin{aligned} & 3.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$

A Level OCR Physics

Chapter 9 Newton's laws of motion and momentum

Question	Answers	Extra information	Mark	AO spec reference
	$v=14 \mathrm{~m} \mathrm{~s}^{-1}$			
(d)	velocity would be lower any one from: - change in momentum same but ball had momentum in opposite direction so final momentum less - same impulse equals $m v-(-m u)=(m v+m u)$ so v has to be less		1 1	$\begin{aligned} & 3.5 .1 \\ & 3.5 .2 \\ & \text { AO3 } \end{aligned}$
5(a)	(Net/resultant) force is proportional to rate of change of momentum	NOT $F=m a$	1	$\begin{aligned} & 3.5 .1 \\ & \text { AO1 } \end{aligned}$
(b)	$W=m g=98 \times 9.81=960 \mathrm{~N}$		1	$\begin{aligned} & 3.2 .1 \\ & \mathrm{AO} 1 \end{aligned}$
(c)	Mass flowing in = mass flowing out or using $\rho=m / V, \rho V=m$ $\rho A v=m$ when water moving at velocity v $\rho A_{\mathrm{H}} \nu_{\mathrm{H}}=\rho A_{\mathrm{N}} v_{\mathrm{N}}$ ρ cancels		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .4 \\ & \text { AO3 } \end{aligned}$
(d)	$\begin{aligned} & \Delta \mathrm{v}=v_{\mathrm{N}}-\left(-v_{\mathrm{H}}\right)=v_{\mathrm{N}}+v_{\mathrm{H}} \\ & A_{\mathrm{H}} v_{\mathrm{H}}=A_{\mathrm{N}} v_{\mathrm{N}} \\ & v_{\mathrm{H}}=A_{\mathrm{N}} v_{\mathrm{N}} / A_{\mathrm{H}} \\ & \Delta v=v_{\mathrm{N}}+A_{\mathrm{N}} v_{\mathrm{N}} / A_{\mathrm{H}} \end{aligned}$	Plus sign must be explained - not magically changed.	1 1	$\begin{aligned} & 3.5 .1 \\ & \text { AO2 } \end{aligned}$
(e)	$\begin{aligned} & F=960 \mathrm{~N} \\ & F=\rho v_{N}^{2} A_{\mathrm{N}}\left(1+A_{\mathrm{N}} / A_{\mathrm{H}}\right) \\ & v_{N}^{2}=960 /\left(\rho A_{\mathrm{N}}\left(1+A_{\mathrm{N}} / A_{\mathrm{H}}\right)\right) \\ & v_{\mathrm{N}}=12 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 \\ & \text { AO3 } \end{aligned}$
6(a)	Momentum before $=m u=0.160 \mathrm{~kg} \times 9 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{OR}$ velocity after collision equal but opposite direction		1	$\begin{aligned} & 3.5 .2 \\ & \mathrm{AO} 1 \end{aligned}$

A Level OCR Physics

Chapter 9 Newton's laws of motion and momentum

Question	Answers	Extra information	Mark	AO spec reference
	$\Delta m v=m v-(-m u)=2 m u=2 \times 0.16 \times 9=2.9 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$		1	
(b)	$F=\Delta m v / \Delta t=2.9 / 0.002=1440 \mathrm{~N}$	possible ecf here	1	$\begin{aligned} & 3.5 .2 \\ & \text { AO1 } \end{aligned}$
(c)	1440 N in the opposite direction Newton's 3rd law stated or described.	direction needed for 1st mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 \\ & \text { AO1 } \end{aligned}$
(d)	$0 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$		1	$\begin{aligned} & 3.5 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(e)	$\begin{aligned} & m \times 4 \times \sin 40=m \times v \times \sin 23 \\ & v=4 \times \sin 40 / \sin 23=6.6 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(if using horizontal and assuming initial velocity is 9 gives 6.4)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .2 \\ & \mathrm{AO} 2 \end{aligned}$
7(a)	${ }_{88}^{222} \mathrm{Ra}+{ }_{2}^{4} \alpha$	1 mark for correct mass numbers 1 mark for correct atomic numbers	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.4 .3 \\ & \text { AO1 } \end{aligned}$
(b)	0 / zero		1	$\begin{aligned} & 3.5 .2 \\ & \text { AO1 } \end{aligned}$
(c)	Alpha particle is moving faster because its mass is smaller/radium slowest because it has largest mass They have to have same magnitude of momentum, since momentum before was zero Have to move in opposite directions		1 1 1	$\begin{aligned} & 3.5 .2 \\ & 6.4 .3 \\ & \text { AO3 } \end{aligned}$
(d)	1 alpha decay 2 beta minus decays	Order does not matter	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.4 .3 \\ & \mathrm{AO} 2 \end{aligned}$
8(a)	$p=m v=1500 \times 22=33000 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ in the x direction		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 \\ & \text { AO1 } \end{aligned}$
(b)	Right-angled triangle drawn with arrows in correct direction Labelled $33000 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ and $5000(5 \times 1000) \mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$

A Level OCR Physics

Chapter 9 Newton's laws of motion and momentum

Question	Answers	Extra information	Mark	AO spec reference
(c)	Final momentum p : $\begin{aligned} & p^{2}=33000^{2}+5000^{2} \\ & p=33377 \\ & v=p / m=33377 / 2500=13 \mathrm{~m} \mathrm{~s}^{-1} \\ & \tan \theta=33000 / 5000=81^{\circ} \end{aligned}$	allow 9° if reference given	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	If car 1 had been stationary there would be no momentum in the x direction before the collision. This means there could be no momentum in the x direction after collision. This is not likely to be true.	Marks for explanation not conclusion. Allow other reasonable explanations in terms of conservation of momentum.	1 1 1	$\begin{aligned} & 3.5 .2 \\ & \text { AO3 } \end{aligned}$

