

Question	Answers	Extra information	Mark	AO spec reference
1(a)	In an elastic collision all the kinetic energy is conserved.		1	3.5.2 AO1
	The statement suggests that only a small amount of KE is lost / collision is either completely elastic or completely inelastic, it cannot be almost elastic		1	
(b)	m = 0.064 kg		1	3.5.1
	$p = mv = 0.064 \times 0.55 = 0.035$ kg m s ⁻¹		1	AO1
(c)	KE = $\frac{1}{2} mv^2$ = $\frac{1}{2} 0.064 \times 0.55^2$ = 9.68×10 ⁻³ J = 9.7 mJ (to 2 s.f.)		1	3.3.2 AO1
(d)	conservation of momentum stated or implied 0.035 = mv	Allow idea of ratios, halving mass will double velocity for same change in momentum	1	3.5.1 AO2
	$v = 1.1 \text{ m s}^{-1}$		1	
(e)	KE = $\frac{1}{2} mv^2$ = $\frac{1}{2} 0.032 \times 1.1^2$ = 0.019 J This is greater than the original ke/kinetic energy is not conserved so this is		1	3.3.2 AO2
	impossible.		1	
2(a)	kinetic energy is conserved		1	3.5.2 AO1
(b)	momentum before = mu = 2.0×10 ⁻²⁶ kg × 500 m s ⁻¹ OR velocity after collision equal but opposite direction	Allow change in velocity = 1000 ms ⁻¹ for a mark	1	3.5.2 AO2
	$\Delta mv = mv - (-mu) = 2 \times 10^{-23}$ kg m s ⁻¹		1 1	
(c)	Distance = $2 \times 0.02 = 0.04$ m Time = $0.04/500 = 8 \times 10^{-5}$ s		1	3.1.1 AO2

Question	Answers	Extra information	Mark	AO spec reference
(d)	$F = \Delta m v / \Delta t$	allow e.c.f. from 2b and 2c	1	3.5.1
	$F = 2 \times 10^{-23} / 8 \times 10^{-5} \text{ s} = 2.5 \times 10^{-19} \text{ N}$		1	AO2
(e)	$P = F/A = 2.5 \times 10^{-19} \text{ N} / 0.02^2 = 6.25 \times 10^{-16} (\text{N m}^{-2})$		1	3.2.4
	Number of molecules = 101 000 / 6.25×10^{-16} = 1.62×10^{20}		1	AO2
3(a)	<i>W</i> = <i>mg</i> = 75 × 9.81 = 740 N (736 N)		1	3.2.1
				AO1
(b)	They are different types of force/should be the same type of force.	Allow: The weight and normal	1	3.5.1
	Both forces act on the same body/Newton's third pairs act on different bodies.	reaction force just happen to be equal because there is no		AO1
		acceleration. Newton's third law pairs are equal under all circumstances.	1	
(c)	The person pulls the Earth towards him/her because of gravity.	description and direction needed for	1	3.5.1
		mark		AO1
(d)	Graph starting at about 740 N	Value not needed but should NOT	Max 3	3.5.1
	Graph shows a dip down to lower value F then back up to 740 N	start from zero		AO2 × 1
	Increase to higher value of F then back down to 740 N	Ignore shape of the dips can be curved or triangular		AO3 × 2
4(a)	Same shape graph Inverted		1	3.5.1
			1	AO2
(b)	Area under graph = impulse /change in momentum		1	3.5.1
	$(0.6 \times 10^{-3} \times 0.5 \times 2.2 \times 10^{3}) + (2.2 \times 10^{3} \times 0.3 \times 10^{-3}) + (2.2 \times 10^{3} \times 0.5 \times 0.6 \times 10^{-3}) = 1.98 \text{ kg m s}^{-1}$			AO2
			1	
(c)	Impulse = change in momentum		1	3.5.1
	$1.98 \text{ s} = 0.14 \times v$			AO2

Question	Answers	Extra information	Mark	AO spec reference
	$v = 14 \text{ m s}^{-1}$			
(d)	 velocity would be lower any one from: change in momentum same but ball had momentum in opposite direction so final momentum less 		1	3.5.1 3.5.2 AO3
	• same impulse equals $mv - (-mu) = (mv + mu)$ so v has to be less		1	
5(a)	(Net/resultant) force is proportional to rate of change of momentum	NOT <i>F</i> = <i>ma</i>	1	3.5.1 AO1
(b)	<i>W</i> = <i>mg</i> = 98 × 9.81 = 960 N		1	3.2.1 AO1
(c)	Mass flowing in = mass flowing out or using $\rho = m/V$, $\rho V = m$ $\rho A v = m$ when water moving at velocity v		1	3.2.4 AO3
	$ \rho A_{\rm H}v_{\rm H} = \rho A_{\rm N}v_{\rm N} $ $ \rho \text{ cancels} $		1	
(d)	$\Delta v = v_{N} - (-v_{H}) = v_{N} + v_{H}$ $A_{H}v_{H} = A_{N}v_{N}$ $v_{H} = A_{N}v_{N} / A_{H}$ $\Delta v = v_{N} + A_{N}v_{N} / A_{H}$	Plus sign must be explained – not magically changed.	1	3.5.1 AO2
			1	
(e)	F = 960 N $F = \rho v_N^2 A_N (1 + A_N / A_H)$ $v_N^2 = 960 / (\rho A_N (1 + A_N / A_H))$ $v_N = 12 \text{ m s}^{-1}$		1 1 1	3.5.1 AO3
6(a)	Momentum before = mu = 0.160 kg × 9 m s ⁻¹ OR velocity after collision equal but opposite direction		1	3.5.2 AO1

Question	Answers	Extra information	Mark	AO spec reference
	$\Delta mv = mv - (-mu) = 2mu = 2 \times 0.16 \times 9 = 2.9 \text{ kg m s}^{-1}$		1	
(b)	$F = \Delta m v / \Delta t = 2.9/0.002 = 1440 \text{ N}$	possible ecf here	1	3.5.2 AO1
(c)	1440 N in the opposite direction Newton's 3rd law stated or described.	direction needed for 1st mark	1 1	3.5.1 AO1
(d)	0 kg m s ^{−1}		1	3.5.2 AO2
(e)	$m \times 4 \times \sin 40 = m \times v \times \sin 23$ $v = 4 \times \sin 40 / \sin 23 = 6.6 \text{ m s}^{-1}$	(if using horizontal and assuming initial velocity is 9 gives 6.4)	1 1	3.5.2 AO2
7(a)	$^{222}_{88}$ Ra + $^{4}_{2}\alpha$	 1 mark for correct mass numbers 1 mark for correct atomic numbers 	1 1	6.4.3 AO1
(b)	0 / zero		1	3.5.2 AO1
(c)	Alpha particle is moving faster because its mass is smaller/radium slowest because it has largest mass		1	3.5.2 6.4.3
	They have to have same magnitude of momentum, since momentum before was zero		1	AO3
	Have to move in opposite directions		1	
(d)	1 alpha decay 2 beta minus decays	Order does not matter	1 1	6.4.3 AO2
8(a)	$p = mv = 1500 \times 22 = 33\ 000 \text{ kg m s}^{-1}$ in the <i>x</i> direction		1 1	3.5.1 AO1
(b)	Right-angled triangle drawn with arrows in correct direction Labelled 33 000 kg m s ^{-1} and 5000 (5 × 1000) kg m s ^{-1}		1 1	3.5.1 AO2

Question	Answers	Extra information	Mark	AO spec reference
(c)	Final momentum <i>p</i> : $p^2 = 33\ 000^2 + 5000^2$	allow 9° if reference given		3.5.2 AO2
	$p = 33\ 377$ $v = p / m = 33\ 377/2500 = 13\ m\ s^{-1}$ $\tan \theta = 33\ 000/5000 = 81^{\circ}$		1 1 1	
(d)	If car 1 had been stationary there would be no momentum in the <i>x</i> direction before the collision. This means there could be no momentum in the <i>x</i> direction after collision. This is not likely to be true.	Marks for explanation not conclusion. Allow other reasonable explanations in terms of conservation of momentum.	1 1 1	3.5.2 AO3