A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
1(a)	Stress = force/area $\begin{aligned} & =4 \mathrm{~N} / 1.62 \times 10^{-8} \mathrm{~m}^{2} \\ & =2.47 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2} \\ & =247 \mathrm{MPa} \end{aligned}$ Graph with final point plotted and line of best fit	Answer	1 1	2	3.4.2
(b)	$\begin{aligned} & Y M=\text { gradient } \\ & =\frac{(1200-600) \times 10^{6}}{4.4-2.9}=\frac{600}{1.5} \\ & =400 \mathrm{MPa} \end{aligned}$	Evidence of conversion of strain to decimal Answer	1 1	2	3.4.2

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
(c)	Below 250% strain the stiffness is increasing, above 250% it is constant		1	2	3.4.2
(d)	Weight of car $=1200 \mathrm{~kg} \times 9.8 \mathrm{~N} / \mathrm{kg}=117600 \mathrm{~N}$ Steel: Yield stress is 250 MPa $\begin{aligned} & \sigma=\frac{F}{A} \\ & A=\frac{F}{\sigma}=\frac{11760}{250000000}=7.2 \times 10^{-6} \mathrm{~m}^{2} \\ & d=2 \sqrt{\frac{A}{\pi}}=2 \sqrt{\frac{7.2 \times 10^{-6}}{\pi}}=7.7 \times 10^{-3} \mathrm{~m} \end{aligned}$ silk: Yield stress is 1650 MPa $\begin{aligned} & \sigma=\frac{F}{A} \\ & A=\frac{F}{\sigma}=\frac{11760}{1650000000}=4.7 \times 10^{-5} \mathrm{~m}^{2} \\ & d=2 \sqrt{\frac{A}{\pi}}=2 \sqrt{\frac{4.7 \times 10^{-5}}{\pi}}=3.0 \times 10^{-3} \mathrm{~m} \end{aligned}$ The diameter of the silk is less than half that of steel.	Manipulation of equations Answers Comment	1 1 1 1	2	3.4.2
(e)	Assume length of cable $=1 \mathrm{~m}$ $\text { Weight }=m g, m=\rho V=\rho \pi r^{2}=\rho \pi\left(\frac{d}{2}\right)^{2}$	Use a length, or length cancels in ration at the end. Correct use of weight and density equations	1 1	2	3.4.2

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
	For steel: weight $=7800 \pi\left(\frac{7.7 \times 10^{-3}}{2}\right)^{2} \times 9.8=3.5 \mathrm{~N}$, For silk: weight $=1300 \pi\left(\frac{3.0 \times 10^{-3}}{2}\right)^{2} \times 9.8=0.09 \mathrm{~N}$ A steel cable has 3.5/0.09 $=40$ times the weight of a silk cable.	Ratio	1		
(f)	The yield stress is higher, but the tensile stress is bigger, so ultimately it takes more force to break a cable of the same area.		1	3	3.4.2
2(a)	Level 3 (5-6 marks) Clear description and analysis. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description and limited analysis or limited description or limited analysis. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	Indicative scientific points may include: Description - Measure the diameter of the wire in several places - Average readings to determine diameter - Clamp two wires from a stand, one as reference wire - Add 5 N to reference wire to keep it taut - Load the other wire with weights (F) in even increments until the wire breaks - Each time measure the difference in the lengths and record the extension	6	1	3.4.2

A Level OCR Physics

Chapter 8 Materials

Question	Answers		Extra information	Mark	AO	Spec reference
	0 marks No response (NR) or no response worthy of credit (0).		- Use a microscope/Vernier scale to measure the length - Calculate the extension by subtracting the length of the reference wire from the length of the test wire - Wear safety googles - Tray of sand to catch weights if they fall - Ensure the wires are vertical Analysis - Calculate the cross-sectional area using $A=\pi r^{2}$ - Calculate the stress using $\sigma=F / A$ - Convert to MPa by dividing by 10^{6} - Calculate strain using $\varepsilon=x / l$ - Convert to a percentage by multiplying by 100 - Plot a graph of σ against ε or graph consistent with candidate's suggested relationship			
(b)	The cross-sectional area of the wire is decreasing/ there is 'necking' of the wire So the YM is calculated from the initial section where the area is constant because the values of stress plotted used that area			1 1	3	3.4.2

A Level OCR Physics

Chapter 8 Materials

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
(c)	$\text { Energy }=\frac{1}{2} F \Delta l=\frac{1}{2} 8 \times 32 \times 10^{-3}=0.12(8) \mathrm{J}=0.13 \mathrm{~J}$		1	2	3.4.2
(d)	For springs in parallel the same force will produce half the extension $\text { Energy }=\frac{1}{2} F \Delta l=\frac{1}{2} 8 \times 16 \times 10^{-3}=0.065 \mathrm{~J}$ The energy stored is halved.		1 1	2	3.4.2
4(a)	Level 3 (5-6 marks) Clear description and analysis. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description and limited analysis or limited description or limited analysis. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response (NR) or no response worthy of credit (0).	Measure the original length of the spring when it is taut but not stretched Add known weight to the spring and find the new length, subtract the original length to find the extension Record length, force and extension. Repeat and find the mean extension Attach the weight to a higher point on the spring, and repeat to find the mean extension with the same weight Repeat until the top of the spring is reached Use at least 6 different lengths Calculate the spring constants using k = F/x for each length Plot a graph of spring constant (y axis) against length (x-axis)	6	1	$\begin{gathered} 3.4 .1 \\ \text { WS } \end{gathered}$

A Level OCR Physics

Chapter 8 Materials

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
	$\begin{aligned} & \sigma=\frac{F}{A}=\frac{52 \mathrm{~N}}{8.0 \times 10^{-8} \mathrm{~m}^{2}}=6.5 \times 10^{8} \mathrm{~Pa} \\ & \text { Strain } \varepsilon=\frac{\Delta l}{l_{0}}=\frac{0.43}{2.7}=0.16 \\ & Y M=\frac{\sigma}{\varepsilon} \\ & \quad=\frac{6.5 \times 10^{8} \mathrm{~Pa}}{0.16}=4.1 \times 10^{9} \mathrm{~Pa} \end{aligned}$	Calculation of strain Answer	1 1		
(b)	$\text { Energy }=\frac{1}{2} F \Delta l=\frac{1}{2} 52 \times 0.43=11.18 \mathrm{~J}$ Mass of line $m=\rho V$ $\begin{aligned} & 1.21 \mathrm{~g} \mathrm{~cm}^{-3}=1210 \mathrm{~kg} \mathrm{~m}^{-3} \\ & =1210 \mathrm{~kg} \mathrm{~m}^{-3} \times\left(8.0 \times 10^{-8} \mathrm{~m}^{2} \times 2.7 \mathrm{~m}\right)=2.6 \times 10^{-4} \mathrm{~kg} \end{aligned}$ Assuming all of the energy stored is transferred to a kinetic energy store $\begin{aligned} E & =\frac{1}{2} m v^{2} \\ v & =\sqrt{\frac{2 E}{m}} \\ & =\sqrt{\frac{2 \times 11.18}{2.6 \times 10^{-4} \mathrm{~kg}}} \\ & =293 \mathrm{~m} / \mathrm{s} \end{aligned}$	Calculation of energy Calculation of mass Use of equation for k.e. Answer	1 1 1 1	2	3.4.2

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
(c)	If some energy is not transferred to the kinetic store the speed would be smaller.		1	2	3.4.2
(d)	If the weight is halved the energy is halved Speed is proportional to \sqrt{E}, so the speed is reduced by $\frac{1}{\sqrt{2}}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.4.2
6(a)	Material A because there will be a small strain for a large stress	Do not award marks for just F and x without stress/strain	1	2	3.4.2
(b)	Energy = area under graph by counting squares 1 square $=1 \mathrm{~N} \times 0.005 \mathrm{~m}=5 \times 10^{-3} \mathrm{~J}, 42$ squares (approximately) 0.21 J	Allow $40-44$ squares/ $4.0 \times 10^{-3} \mathrm{~J}-$ $4.4 \times 10^{-3} \mathrm{~J}$	1 1	2	3.4.2

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
(c)	$\begin{aligned} & \text { Mass of cord }=\text { density } \times \text { volume } \\ & =\text { density } \times \text { length } \times \text { area } \\ & =1.15 \mathrm{~g} / \mathrm{cm}^{3} \times 100 \mathrm{~cm} \times \pi \times(0.05 \mathrm{~cm})^{2} \\ & =0.9032 \mathrm{~g} \\ & =9.0 \times 10^{-4} \mathrm{~kg} \\ & \text { Energy }=1 / 2 \mathrm{mv}^{2} \\ & v \end{aligned} \begin{array}{r} \sqrt{\frac{2 E}{m}} \\ =\sqrt{\frac{2 \times 0.21 \mathrm{~J}}{9.0 \times 10^{-4} \mathrm{~kg}}} \\ =22(21.6) \mathrm{m} / \mathrm{s} \end{array}$	Use of density equation with consistent units	1 1 1	2	$\begin{aligned} & 3.2 .4 \\ & 3.3 .2 \end{aligned}$
(d)		Approximately half the extension for each force Same shape	1 1	2	3.4.1

A Level OCR Physics

Chapter 8 Materials

Question	Answers		Extra information	Mark	AO	Spec reference
(e)	Initial gradient $=2 \mathrm{~N} / 0.0075 \mathrm{~m}=267 \mathrm{~N} / \mathrm{m}$ $\begin{aligned} Y M & =\frac{\sigma}{\varepsilon}=\frac{F / A}{x / l} \\ & =\frac{F / A}{x / l}=\frac{F}{x} \cdot \frac{l}{A} \\ & =\frac{267.1}{\pi(0.005)^{2}} \\ & =3.4(3.395) \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$	Allow 250- 280 N m^{-1}		1 1 1	2	3.4.2
(f)	In equilibrium: $R_{\mathrm{A}}+R_{\mathrm{B}}=m_{\text {total }} g$ $R_{\mathrm{A}}+R_{\mathrm{B}}=(0.1+0.2+0.05) \times 9.81=3.43 \mathrm{~N}$ Clockwise moments about brick A: $(0.1 \times 9.81 \times 0.45)+(0.2 \times 9.81$ $\times 0.55)+(0.05 \times 9.81 \times 0.5)=0.441+1.08+0.245=1.77 \mathrm{Nm}$ Anticlockwise moment $=1 \times R_{\mathrm{B}}$ $\begin{aligned} & R_{\mathrm{B}}=1.77 \mathrm{~N} \\ & R_{\mathrm{B}}=3.43-1.77 \mathrm{~N}=1.67 \mathrm{~N} \end{aligned}$		Resolving forces vertically Taking moments Answers (both forces correct)	1 1 1	2	3.2.3
7(a)	The diameter to calculate cross-sectional area The extension for each increase in load Plot stress = load/area on the y-axis Against strain $=$ extension/original length on the x-axis		Alternative Plot load vs extension	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.4.2
(b)	The strain will be too small/smaller than the actual value Calculated YM will be larger than value calculated with correct measurement			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.4.2
(c)	$\begin{aligned} & \text { Estimate of uncertainty }=+/-2 \mathrm{~mm} \\ & \left.\% \text { uncertainty }=\left(2 \times 10^{-3} \mathrm{~m} \times 100\right) / 60.0 \times 10^{-2} \mathrm{~m}\right) \\ & =0.3 \% \end{aligned}$		Accept values between 1 mm and 3 mm	1 1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	WS

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
(d)	$\begin{aligned} & \text { Strain }=0.1 \times 10^{-2} \\ & \text { Stress }=\mathrm{YM} \times \text { strain }=1.5 \times 10^{11} \mathrm{~Pa} \times 10^{-3}=1.5 \times 10^{8} \mathrm{~Pa} \\ & =F / A=1000 \mathrm{~N} / \mathrm{A} \\ & \mathrm{~A}=1000 \mathrm{~N} / 1.5 \times 10^{8} \mathrm{~Pa}=6.6 \times 10^{-6} \mathrm{~m}^{2} \\ & \text { Diameter }=2 \times \sqrt{ }\left(6.6 \times 10^{-6} \mathrm{~m}^{2} / \pi\right) \\ & =2.9 \times 10^{-3} \mathrm{~m} \end{aligned}$		1 1 1	2	3.4.2
(e)	The force is shared by two wires Maximum weight is 2000 N , so two people $=1400 \mathrm{~N}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.4.2
(f)	$v^{2}=u^{2}+2 a s$ Assuming acceleration is $9.81 \mathrm{~m} \mathrm{~s}^{-2}$ / no air resistance $\begin{aligned} v & =\sqrt{2 a s} \\ v & =\sqrt{2 \times 9.81 \times 12} \\ & =15(.3) \mathrm{m} \mathrm{~s}^{-1} \end{aligned}$	Correct assumption Use of equation of motion Answer to 2 d.p.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.1.2
(g)	Smaller The drop will reach terminal velocity faster than the brush because the weight is less The brush will accelerate for a longer time reaching a larger speed		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		3.2.2
8(a)	Assume all the energy stored in the tendons is transferred to a gravitational potential energy store $\frac{1}{2} F \Delta l=m g h$ And $F=k x$, so $m g h=\frac{1}{2} k x^{2}$	Conservation of energy Substitution for F Estimation of extension (based on size of frog)	1 1 1	2	$\begin{aligned} & 3.3 .2 \\ & 3.4 .2 \end{aligned}$

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
	So $k=\frac{2 m g h}{x^{2}}$ Estimation of extension of tendon -1 mm Assume height $=10 \times 0.02 \mathrm{~m}=0.2 \mathrm{~m}$ $\begin{aligned} k & =\frac{2 \times 7 \times 10^{-3} \times 9.81 \times 0.2}{10^{-3^{2}}} \\ & =27(.44) \mathrm{kN} / \mathrm{m} \end{aligned}$	Calculation	1		
(b)		Straight line graph labelled spring Curved line graph labelled rubber Line labelled polythene	1 1 1	1	3.4.1
(c)	Rubber bands, They are not permanently deformed when the load is removed		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.4.1
(d)	$h=\frac{k x^{2}}{2 m g}$ The mass of the human is much bigger ($70 \mathrm{~kg} / 7 \mathrm{~g}=10^{4}$), so either the extension of the tendon would have to be 100 times bigger, or the tendons would need to be 10000 times stiffer to produce the same height.	Credit for any reason showing a link to the physical quantities used in part 8(a)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.4.1

A Level OCR Physics

Chapter 8 Materials

Question	Answers	Extra information	Mark	AO	Spec reference
(e)	$\begin{aligned} & \text { Energy stored }=m g h=\frac{1}{2} k x,{ }^{2} \text { mass of human } \sim 70 \mathrm{~kg} \\ & x=\sqrt{\frac{2 m g h}{k}} \\ & x=\sqrt{\frac{2 \times 70 \times 9.81 \times 1.5}{27}} \\ & x=8.7 \mathrm{~m} \end{aligned}$ The springs in the robot must have springs that are much stiffer than those of the tendon	Use of conservation of energy Answer Sensible comment	1 1 1	2/3	$\begin{aligned} & 3.3 .2 \\ & 3.4 .2 \end{aligned}$
(f)	$\begin{aligned} & \text { Power }=\text { energy/ time } \\ & =m g h / \text { time } \\ & =70 \times 9.81 \times 1.5 / 1.2=860(858) \mathrm{W} \end{aligned}$ Which is about the same power as a microwave oven	Answer Comment	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.3.3

