A Level OCR Physics

Chapter 4 Nature of quantities

Question	Answers	Extra information	Mark	AO	Spec reference
1(a)	The student has drawn arrows not lines/the diagram shows directions as well as distances		1	2	2.3.1
(b)	Evidence of use of scale e.g. Length of resultant line = 5.3 cm Length of 25 m line = 4.6 cm , so there are 5.43 m/cm Resultant = $5.3 \times 5.43 = 29 \text{ m}$	Calculation of scale Answer	1 1	2	2.3.1
(c)	Resultant displacement = $\sqrt{25^2 + 15^2}$ = $\sqrt{850}$ = 29 m		1 1	2	2.3.1
(d)	Angle = $\tan^{-1}(15/25)$ = 31°		1 1	2	2.3.1
2(a)	Momentum is the product of mass and velocity, and velocity is a vector	Accept magnitude and direction	1	1	2.3.1
(b)	Resolving in the <i>x</i> -direction: $m_1v_0 = m_1v_1 \cos \theta_1 + m_2v_2/\cos \theta_2$ Resolving in the <i>y</i> -direction: $m_1v_1 \sin \theta_1 = m_2v_2 \sin \theta_2$		1	2	2.3.1
(c)	$m_{2} = 1.67 \times 10^{-27} \text{ kg}$ $m_{1}v_{1} \sin \theta_{1} = m_{2}v_{2} \sin \theta_{2}$ $m_{1} = \frac{m_{2}v_{2} \sin \theta_{2}}{v_{1} \sin \theta_{1}}$ $= \frac{1.67 \times 10^{-27} \text{ kg} \times 2.4 \times 10^{8} \text{ m s}^{-1} \times 0.616}{1.8 \times 10^{8} \text{ m s}^{-1} \times 0.422}$	Correct substitution	1	2	2.3.1
	$= 3.25 \times 10^{-27} \text{ kg}$				

A Level OCR Physics

Chapter 4 Nature of quantities

Question	Answers	Extra information	Mark	AO	Spec reference
	$v_{0} = \frac{m_{1}v_{1} \cos \theta_{1} + m_{2}v_{2} \cos \theta_{2}}{m_{1}}$	Correct substitution	1		
	$= (3.25 \times 10^{-27} \text{ kg} \times 1.8 \times 10^8 \text{ m s}^{-1} \times 0.906) + (1.67 \times 10^{-27} \text{ kg} \times 2.4 \times 10^8 \text{ m})$ $= \frac{(5.30 \times 10^{-19}) + (3.16 \times 10^{-19})}{3.25 \times 10^{-27} \text{ kg}}$	Answer	1		
	$= 2.60 \times 10^8 \text{ m s}^{-1}$				
(d)	Momentum would not be conserved in the <i>x</i> -direction		1	3	2.3.1
3(a)	F _n F _i	Three arrows in correct directions, arrows attached to the dot, labelled weight/normal or reaction/friction	1	2	2.3.1
	Fg	Normal and frictional force at 90° by eye θ labelled correctly	1 1		
(b)	$F_{\rm n} = F_{\rm g} \cos \theta$ $F_{\rm f} = F_{\rm g} \sin \theta$	Accept other symbols such as W , N , and F	1 1	2	2.3.1
(c)	$F_{\rm f} = \mu F_{\rm n} = \mu F_{\rm g}/\cos \theta$		1	2	2.3.1
	$F_{f} = F_{g} \sin \theta$ $\mu F_{g} \cos \theta = F_{g} \sin \theta$ $\mu = \tan \theta$		1 1		
(d)	As the mass increases, the weight increases as $F_g = F_g \sin \theta = mg \sin \theta$, but so does the frictional force as $F_f = \mu F_n = \mu F_g$ – the mass cancels and does not affect the angle.	Dependence of $F_{\rm g}$ and $F_{\rm n}$ on mass Reasoned argument for independence of mass	1 1	3	2.3.1
4(a)	The person will be acted on by gravity that will, vertically, slow them to a stop and then accelerate them.	Method described accurately Correct vertical component	1 1	3	2.3.1

A Level OCR Physics

Chapter 4 Nature of quantities

Question	Answers	Extra information	Mark	AO	Spec reference
	Vertical component of velocity = $v \sin 30 = + v/2$ (upwards is positive) Acceleration = -9.81 m s ⁻² a = change in v /change in t	Accept use of $v = u + at$	1		
	$a = \frac{(0 - v/2)}{t}$ t = +v/19.62 This is the time to come to a halt, so total time = 2 × +v/19.62 = +v/9.81	Answer			
(b)	Assume that the horizontal component of the velocity is constant during flight Distance travelled = horizontal component of velocity × time Horizontal component of velocity = $v \cos 30 = +0.866v$ (forward is positive) Distance travelled = $+0.866v \times +v//9.81$	Method described accurately Correct horizontal component	1 1	3	2.3.1
	Distance = $8.83 \times 10^{-2} v^2$	Answer	1		
(c)	Distance = $8.83 \times 10^{-2} v^2$ $v = \sqrt{\frac{d}{8.83 \times 10^{-2}}} = \sqrt{\frac{50}{8.83 \times 10^{-2}}} = 23.8 \text{ m s}^{-1}$		1	2	2.3.1
(d)	Conservation of energy; $mgh = 0.5 mv^2$	Calculation of height using conservation of energy	1	2	2.3.1
	$h = \frac{v^2}{2g} = \frac{23.8^2}{2 \times 9.81} = 28.9 \text{ m}$	Allow e.c.f from (c)			
	This is the lowest height required as energy would also have been transferred to the thermal stores of the surrounds/drag forces would not be negligable	Appropriate comment	1		