A Level OCR Physics

Chapter 4 Nature of quantities

Question	Answers	Extra information	Mark	AO	Spec reference
1(a)	The student has drawn arrows not lines/the diagram shows directions as well as distances		1	2	2.3.1
(b)	Evidence of use of scale e.g. Length of resultant line $=5.3 \mathrm{~cm}$ Length of 25 m line $=4.6 \mathrm{~cm}$, so there are $5.43 \mathrm{~m} / \mathrm{cm}$ Resultant $=5.3 \times 5.43=29 \mathrm{~m}$	Calculation of scale Answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2.3.1
(c)	$\begin{aligned} & \text { Resultant displacement }=\sqrt{25^{2}+15^{2}} \\ & =\sqrt{850}=29 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2.3.1
(d)	$\begin{aligned} & \text { Angle }=\tan ^{-1}(15 / 25) \\ & =31^{\circ} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2.3.1
2(a)	Momentum is the product of mass and velocity, and velocity is a vector	Accept magnitude and direction	1	1	2.3.1
(b)	Resolving in the x-direction: $m_{1} v_{0}=m_{1} v_{1} \cos \theta_{1}+m_{2} v_{2} / \cos \theta_{2}$ Resolving in the y-direction: $m_{1} v_{1} \sin \theta_{1}=m_{2} v_{2} \sin \theta_{2}$		1 1	2	2.3.1
(c)	$\begin{aligned} & m_{2}=1.67 \times 10^{-27} \mathrm{~kg} \\ & m_{1} v_{1} \sin \theta_{1}=m_{2} v_{2} \sin \theta_{2} \\ & m_{1}=\frac{m_{2} v_{2} \sin \theta_{2}}{v_{1} \sin \theta_{1}} \\ &=\frac{1.67 \times 10^{-27} \mathrm{~kg} \times 2.4 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times 0.616}{1.8 \times 10^{8} \underline{\mathrm{~m} \mathrm{~s}^{-1}} \times 0.422} \\ &=3.25 \times 10^{-27} \mathrm{~kg} \end{aligned}$	Correct substitution Answer	1 1	2	2.3.1

A Level OCR Physics

Chapter 4 Nature of quantities

Question	Answers	Extra information	Mark	AO	Spec reference
	$\begin{aligned} & v_{0}=\frac{m_{1} v_{1} \cos \theta_{1}+m_{2} v_{2} \cos \theta_{2}}{m_{1}} \\ & =\left(3.25 \times 10^{-27} \mathrm{~kg} \times 1.8 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times 0.906\right)+\left(1.67 \times 10^{-27} \mathrm{~kg} \times 2.4 \times 10^{8} \mathrm{~m}\right. \\ & \left.\underline{\mathrm{s}^{-1}} \times 0.788\right) \div 3.25 \times 10^{-27} \mathrm{~kg} \\ & =\frac{\left(5.30 \times 10^{-19}\right)+\left(3.16 \times 10^{-19}\right)}{3.25 \times 10^{-27} \mathrm{~kg}} \\ & =2.60 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	Correct substitution Answer	1 1		
(d)	Momentum would not be conserved in the x-direction		1	3	2.3.1
3(a)		Three arrows in correct directions, arrows attached to the dot, labelled weight/normal or reaction/friction Normal and frictional force at 90° by eye θ labelled correctly	1 1 1	2	2.3.1
(b)	$\begin{aligned} & F_{\mathrm{n}}=F_{\mathrm{g}} \cos \theta \\ & F_{\mathrm{f}}=F_{\mathrm{g}} \sin \theta \end{aligned}$	Accept other symbols such as W, N, and F	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2.3.1
(c)	$\begin{aligned} & F_{\mathrm{f}}=\mu F_{\mathrm{n}}=\mu F_{\mathrm{g}} / \cos \theta \\ & F_{\mathrm{f}}=F_{\mathrm{g}} \sin \theta \\ & \mu \mathrm{~F}_{\mathrm{g}} \cos \theta=\mathrm{F}_{\mathrm{g}} \sin \theta \\ & \mu=\tan \theta \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	2.3.1
(d)	As the mass increases, the weight increases as $F_{\mathrm{g}}=F_{\mathrm{g}} \sin \theta=m g \sin \theta$, but so does the frictional force as $F_{\mathrm{f}}=\mu F_{\mathrm{n}}=\mu F_{\mathrm{g}}$ - the mass cancels and does not affect the angle.	Dependence of F_{g} and F_{n} on mass Reasoned argument for independence of mass	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	2.3.1
4(a)	The person will be acted on by gravity that will, vertically, slow them to a stop and then accelerate them.	Method described accurately Correct vertical component	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	2.3.1

A Level OCR Physics

Chapter 4 Nature of quantities

Question	Answers	Extra information	Mark	AO	Spec reference
	Vertical component of velocity $=v \sin 30=+v / 2$ (upwards is positive) Acceleration $=-9.81 \mathrm{~m} \mathrm{~s}^{-2}$ $a=$ change in $v /$ change in t $\begin{aligned} & a=\frac{(0-v / 2)}{t} \\ & t=+v / 19.62 \end{aligned}$ This is the time to come to a halt, so total time $=2 \times+v / 19.62=+v / 9.81$	Accept use of $v=u+a t$ Answer	1		
(b)	Assume that the horizontal component of the velocity is constant during flight Distance travelled $=$ horizontal component of velocity \times time Horizontal component of velocity $=v \cos 30=+0.866 v$ (forward is positive) Distance travelled $=+0.866 v \times+v / / 9.81$ Distance $=8.83 \times 10^{-2} v^{2}$	Method described accurately Correct horizontal component Answer	1 1 1	3	2.3.1
(c)	$\begin{aligned} & \text { Distance }=8.83 \times 10^{-2} v^{2} \\ & v=\sqrt{\frac{d}{8.83 \times 10^{-2}}}=\sqrt{\frac{50}{8.83 \times 10^{-2}}}=23.8 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		1	2	2.3.1
(d)	Conservation of energy; $\begin{aligned} & m g h=0.5 m v^{2} \\ & h=\frac{v^{2}}{2 g}=\frac{23.8^{2}}{2 \times 9.81}=28.9 \mathrm{~m} \end{aligned}$ This is the lowest height required as energy would also have been transferred to the thermal stores of the surrounds/drag forces would not be negligable	Calculation of height using conservation of energy Allow e.c.f from (c) Appropriate comment	1 1	2	2.3.1

