A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
1(a)	data on table: $2.54 \quad 6.43$ (If rounded data used may have 6.45)	must be to same number of sig figs as table	1	2	3.1.1a
(b)	point plotted to within nearest half grid square line of best fit drawn - with intercept		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	1.1.3d
(c)	systematic error in measuring height s - needs to be middle of card to middle of light gate/s measured too short		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	2.2.1
(d)	triangle drawn on graph or use of coordinates demonstrated value for gradient $=17$	not simply using values from table must be from graph accept values from 16.6 to 17.4	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	1.1.3dii
(e)	$\begin{aligned} & v^{2}=u^{2}+2 a s \text { and } u=0 \\ & v^{2}=2 a s \\ & \text { gradient }=2 a \\ & g=\frac{17}{2}=8.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	range of values 8.7 to 8.3 from gradient	1 1 1	2	3.1.2a
(f)	$\begin{aligned} & \text { \%difference }=\frac{\text { result }- \text { actual }}{\text { actual }} \times 100 \% \\ & \text { \%difference }=\frac{1.31}{9.81} \times 100 \%=13 \% \end{aligned}$	range of values 11.3 to 15.4% from value of g obtained	1	2	2.2.1c
2(a)	any three from: - draw round the semi-circular block and mark a point in the centre of the straight edge (measured with ruler) - use a protractor to mark the normal (line perpendicular) from this point		$\max 3$	1	1.1.2

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
	- mark lines 5° apart from the normal to 35° (at least 6 suggested) - each entering the curved part of the block perpendicular to the surface for the angles of incidence - use fine ray of light or laser as source and point along marked angles of incidence - mark points along outgoing ray to mark its path - connect the points along the marked path and use a protractor to measure the angle of refraction				
(b)	large triangle seen or coordinates used shown $\begin{aligned} & \text { gradient }=\frac{0.66-0.06}{0.6-0.1}=0.83 \\ & n=1 / \text { gradient }=1 / 0.83=1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	$\begin{aligned} & \text { 4.4.2d } \\ & \text { 1.1.3dii } \end{aligned}$
(c)	line of worst fit drawn (could be max or min) gradient of $\max =\frac{0.58-0}{0.60-0}=0.97$ so $n=1.0$ absolute uncertainty $=1.2-1.0=0.2$ gradient of $\min =\frac{0.60-0.06}{0.68-0.00}=0.79$ so $n=1.26$ absolute uncertainty $=0.06$		1 1 1	2	2.2.1d
(d)	experimental value $=1.2 \pm 0.2$ (or 0.06) therefore value does not lie within experimental uncertainty	answer consistent with their results - so if they drew min line of best fit values does not lie in experimental uncertainty	1	2	3.1.2

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
3(a)	Temperature: - place whole apparatus in water bath making sure trapped air completely submerged - stir regularly to make sure temperature even - leave time at each temperature to ensure air at same temperature as water bath - use thermometer/digital thermometer to record temperature Volume: - length is directly proportional to volume - attach apparatus to a ruler - read length of trapped air - make sure eye level with meniscus when reading - do not remove from water bath when reading measurement Record atmospheric pressure on the day.	must be at least one statement from volume and temperature for full marks	$\max 4$	1	5.1.4d
(b)	any two from: lowest temperature possible minimum internal energy (allow zero kinetic energy) $-273^{\circ} \mathrm{C}$ pressure of a gas at this temperature is zero		$\max 2$	1	5.1.2e
(c)	$\begin{aligned} & \text { intercept }=3 \\ & \text { gradient }=\frac{3.9-3.0}{80}=0.011 \\ & \text { use of } y=m x+c \text { when } y=0 \\ & 0=0.011 x+3 \\ & x=-270(272)^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	$\begin{aligned} & \text { 1.1.3dii } \\ & \text { 5.1.4d } \end{aligned}$
(d)	This value is much lower than earlier value.		1	3	2.2.1a

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
	This will be because the air was warmer than the surrounding water as the water cooled too quickly/temperature lag. This would give a larger intercept and shallower gradient making result too low.		1 1		
4(a)	Using a micrometer/Vernier callipers take the diameter along the length in several places and find mean.	idea of several readings along length important for second mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1.1.2
(b)	$\begin{aligned} & A=\pi r^{2}=\pi \times\left(0.11 \times 10^{-3}\right)^{2}=3.8 \times 10^{-8} \mathrm{~m}^{2} \\ & \text { use of } \rho=\frac{R A}{l}=\frac{7.0 \Omega \times 3.8 \times 10^{-8}}{0.50}=5.3 \times 10^{-7} \\ & \Omega \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	4.4.2a
(c)	$\begin{aligned} & \% \text { length }=\frac{0.001}{0.500} \times 100 \%=0.2 \% \\ & \% \text { diameter }=\frac{0.01}{0.22} \times 100 \%=4.5 \% \\ & \% R=\frac{0.4}{7.0} \times 100 \%=5.7 \% \\ & \% \text { uncertainty }=0.2+(2 \times 4.5)+5.7=15 \% \end{aligned}$	1 mark for calculating any one percentage uncertainty correctly	1 1	2	2.2.1c
(d)	any sensible suggestion for graph and how ρ calculated: plot R versus length and gradient $=\frac{\rho}{A}$ plot $R A$ versus length and gradient $=\rho$ why more accurate: allows you to identify anomalies systematic errors in measuring length/or resistance of connecting wires will not affect final answer	must have explained graph and suggested why more accurate for full marks	$\max 3$	3	4.4.2a

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
5(a)	Depth: using a ruler with no zero error/marking levels on side of tray before experiment begins ensure ruler is read at eye level Speed: using a stopwatch measure the time for wave to travel at least three lengths of tray/or some consideration of increased distance/increased time to reduce uncertainty caused by human reaction time	allow any acceptable method for accurate measurements	max 4	3	1.1.2
(b)	$\begin{aligned} & v^{2}=g h \\ & v^{2}=\mathrm{m}^{2} \mathrm{~s}^{-2} \\ & g h=\mathrm{m} \mathrm{~s}^{-2} \mathrm{~m} \end{aligned}$ units the same		1	3	2.1.2d
(c)	any sensible suggestion of graph. what to expect and how to confirm: v versus \sqrt{h} should be straight-line graph through the origin gradient $=\sqrt{g}$ or v^{2} versus h should be straight-line graph through the origin gradient $=g$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	1.1.3b and d
(d)	students would have to confirm by using a different set of apparatus or see if another student found the same relationship repeating the experiment		1	3	2.2.1b
6(a)	sensible guess at room's dimensions: e.g. $3 \mathrm{~m} \times 10 \mathrm{~m} \times 15 \mathrm{~m}=450 \mathrm{~m}^{3}$ use of mass $=\rho V$ $M=1.2 \times 450=540 \mathrm{~kg}$	allow any sensible proposal here	1 1	3	2.1.1

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
(b)	$E=P \times t=80 \times 28 \times 1 \mathrm{~s}=2240 \mathrm{~J}$		1	2	3.3.3a
(c)	$\begin{aligned} & E=2240 \times 20 \times 60=2688000 \mathrm{~J} \\ & E=m c \Delta \theta \\ & \Delta \theta=\frac{E}{m c}=5^{\circ} \mathrm{K} \end{aligned}$	answers will vary based on mass calculations	1 1	2	5.1.3a
(d)	no as temperature in room rises, thermal energy will be transferred from the room. rate of energy transfer dependent on temperature outside / temperature difference / insulation / of walls / windows doors	sensible answer backed by logical reasoning	1 1	3	5.1.3
7(a)	units $T^{2}=s^{2}$ idea that $4 \pi^{2}$ are dimensionless or $k=\frac{F}{x}$ $F=m a \text { or } \mathrm{N}=\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2} \text { so } k=\frac{\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2}}{\mathrm{~m}}=\mathrm{kg} \mathrm{~s}^{-2}$ substituted in and cancelling seen $=\frac{\mathrm{kg}}{\mathrm{~kg} \mathrm{~s}^{-2}}=\frac{1}{\mathrm{~s}^{-2}}=\mathrm{s}^{2}$		1 1 1	2	2.1.2d
(b)	Level 3 (5-6 marks) Clear method, including how to obtain high quality data and analyse for accuracy There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description and some analysis or	Labelled diagram of apparatus may be marks available here for method depending on detail Method - spring attached to clamp stand - clamped to the table with Gclamp - use of stopwatch to measure oscillations	$\max 6$	2	$\begin{aligned} & \text { 1.1.1 } \\ & \text { 1.1.2 } \end{aligned}$

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
	attempt at each heading There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited method or suggestions for high quality or analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks	- timing multiple oscillations to reduce uncertainty from reaction time using stop watch - use of scales to check mass of masses - vary mass and measure T - safety - wear googles in case spring breaks and watch for falling masses Quality of data - use of fiducial marker - timing from centre point - measuring length from top to middle of bob with meter ruler - masses chosen so T longer Additional experiment - finding spring constant of spring by measuring extension for increasing mass - using gradient of graph Accuracy T^{2} versus m graph should be straight line through origin Compare value of k from both experiments $\text { gradient of graph }=\frac{4 \pi^{2}}{k}$			
(c)	column 21.1 becomes 1.10 add units s^{2} for third column		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2.1.2f

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO	Spec reference
	values correct in third column: $0.34,0.61,0.94,1.21,1.54$		1		
(d)	points plotted correctly within $1 / 2$ square line of best fit drawn gradient calculated gradient 3.0	Accept values from 2.8 to 3.2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	2.2.1d
(e)	$\begin{aligned} & T^{2}=\frac{4 \pi^{2} m}{k} \\ & \text { gradient }=\frac{4 \pi^{2}}{k} \\ & k=13.2 \mathrm{~N} \mathrm{~m}^{-1} \end{aligned}$	Accept values from 12.3 to 14.1	1 1	2	2.2.1d
(f)	There are no repeats displayed in the table and so the precision of the data is unknown The data is accurate because the value of g is close to the true value Calculation of \% uncertainty (7\%)	for second mark there should be justification of accuracy depends on their results - anything within 10% could be called accurate.	1 1 1	3	2.2.1
8(a)	Use of $Q=I t$ or $W=V Q$ $W=F d=\operatorname{mad}$ (or other energy equation) $\begin{aligned} & V=\frac{W}{Q}=\frac{W}{I t} \\ & V=\frac{m a d}{I t}=\frac{\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2} \mathrm{~m}}{\mathrm{~A} \mathrm{~s}}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~A}^{-1} \mathrm{~s}^{-3} . \end{aligned}$	must be able to see cancelling and evidence of equations (can be entirely in units)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	2	2.2.2b
(b)	simple circuit with one cell and variable resistor and ammeter in series and voltmeter in parallel with variable resistor or cell	mark for correct symbols and mark for correct arrangement	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	4.3.2c

A Level OCR Physics

Chapter 3 Making measurements and analysing data

Question	Answers	Extra information	Mark	AO
Spec reference				
(c)	e.m.f. is y intercept $-1.44 \pm 0.05 \mathrm{~V}$ internal resistance is the gradient $0.41 \pm 0.2 \Omega$	Accept range from 1.39 to 1.49 V	1	2
(d)	the actual e.m.f. is lower by $0.1 \mathrm{~V}-$ or stated value $1.34-$ consistent with results internal resistance will be the same since all points are shifted by same amount / gradient doesn't change	for all 3 marks students must have explained answers	1	3

