

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	A (top line labelled) This is because the attenuation coefficient for muscle is less than bone/gradient less/X-rays absorbed less by muscle	Allow counter arguments i.e. muscle greater attenuation coefficient	1	6.5.1 AO1
(b)	Use of intercept – either line extrapolated In I_0 = 6.9 I_0 = 990 W		1	6.5.1 1.1.3 1.1.4 AO2
(c)	$I = I_0 e^{-\mu x}$ In $I = \ln I_0 -\mu x$ attenuation is the gradient Gradient calculated = 0.96		1 1 1	6.5.1 1.1.3 1.1.4 AO2
(d)	$I = I_0 \ e^{-\mu x} \ \text{when } x = x_{1/2} \ I = I_0/2 = 0.5$ In 0.5 = $-\mu \ x_{1/2}$ $-0.693 = -\mu \ x_{1/2}$ $x_{1/2} = 0.693/\mu$	Can also invert and use In 2	1 1	
(e)	$\mu x_{1/2}$ = constant $x_{1/2 \text{ A}} / x_{1/2 \text{ B}} = \mu_{\text{B}}/\mu_{\text{A}}$ Calculate gradient of line B = 2.8 $x_{1/2 \text{ A}} / x_{1/2 \text{ B}}$ = 2.8/0.96 = 2.9 times		1 1 1 1	
2(a)	 Any four from: Piezoelectric effect alternating/high frequency pd/emf applied crystal expands and contracts vibration of faces produces ultrasound/pressurewaves/greater than 20 kHz backing material damps/stops vibrations 	Must contain at least one point about received signal for full marks.	Max 4	6.5.3 AO1

Question	Answers	Extra information	Mark	AO Spec reference
	 short pulses received signals cause crystal to vibrate producing alt pd across the crystal 			
(b)	Signal reflected/transmitted at <u>boundary</u> between two media proportion reflected depends on the acoustic impedance of each medium.		1	6.5.3 AO1
(c)	Correctly identifying B and C $T = 3 \times 2.5 \times 10^{-6} \text{ s} = 7.5 \times 10^{-6} \text{ s}$ $2D = s \times t = 4080 \times 7.5 \times 10^{-6} = 0.031 \text{ m}$ D = 0.015 m	Allow 2 marks for correct working but wrong section identified	1 1 1	6.5.3 AO2
(d)	$v = f\lambda$ $\lambda = 4080/8 \times 10^6 = 5.1 \times 10^{-4} \text{ m}$		1	4.4.1 AO1
(e)	The resolution is the ability to distinguish between objects close together (wtte) the smaller the wavelength the greater detail it is possible to see/mention of diffraction.		1	2.2.1 AO2
3(a)	These cannot pass through tissue so not needed for diagnosis/ are absorbed by tissue increasing harm/risk.		1 1	6.5.1 AO2
(b)	I = P/A $I = 1 \times 10^{-3} / \pi \times (0.75 \times 10^{-3})^2 = 570$ W m ⁻²		1 1 1	4.4.1 A02
(c)	Decrease in intensity, decrease increasing at 3 cm then more steadily at 4.5 cm clear exponential drop shown for 1.5 cm of bone suitably labelled	Values of intensity can be ignored – looking for contrast between bone and muscle.	1	6.5.1 AO2
(d)	Max 3		Max 3	6.5.1

Question	Answers	Extra information	Mark	AO Spec reference
	muscle and tissue have similar attenuation coefficients			AO2
	heart does not stay still for long			
	image captured quickly/short exposure			
	contrast used/barium/iodine			
	with high coefficient/high Z.			
4(a)	Pair production		1	6.5.1
				AO1
(b)	Any two from:	Both name and description needed	Max 2	6.5.1
	Photoelectric effect: X-ray photon ejects/removes an electron	for mark		AO1
	Compton (scattering) : Photon emerges with less energy/ longer wavelength/lower frequency and an electron escapes/ejected (from the atom)			
	Scattering: Photon is scattered by an electron			
(c)	Level 3 (5–6 marks)	Indicative points:	Max 6	6.5.1
	Clear description of the scan procedure and how 3D image formed	Scan procedure:		AO1
	There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	 X-ray tubes and detectors rotated round the body fan 		
	Level 2 (3–4 marks)	shaped/thin beam of X-rays 2D /cross-section slice of the patient X-ray tubes move/spiral		
	Clear description of the scan procedure and a limited description of how 3D image formed			
	There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.	across the body. Attenuated by different amounts by different tissues		
	Level 1 (1–2 marks)	- Intensity of transmitted X-rays		
	Limited description of scan procedure or how 3D image formed	recorded by detectors		
	The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.	3D image formation:		
		 Images are transmitted to a 		

Question	Answers	Extra information	Mark	AO Spec reference
	0 marks	computer		
	No response or no response worthy of credit	- Computer compiles 2D slices to build up a 3D image		
(d)	Max 2 from:		1	6.5.1
	patients are exposed to ionising radiation			AO2
	increased risk of cancer		1	
	expensive			
	time consuming/waste of resources			
5(a)	The acoustic impedance of air is too different from skin / too much reflected		1	6.5.3
	from skin.			AO1
	Gel has similar acoustic impedance to skin/tissue.		1	
(b)	$\Delta f l f = 2v \cos \theta / c$	Accept that there is no movement	1	6.5.3
	cos 90 = 0 so no measurements possible.	towards/away from detector so no Doppler Shift can be recorded		AO1
(c)	$\Delta f f = 2v \cos \theta / c$		1	6.5.3
	$\Delta f = 2vf \cos \theta/c = 2 \times 0.12 \times 5 \times 10^6 \times \cos 50 / 1600$			AO2
	$\Delta f = 480 \text{ Hz}$		1	
(d)	Small change in frequency /reflected frequency 4.999×10 ⁶ – need sensitive		1	6.5.3
	scale to detect change			AO3
	Decrease the angle between blood vessel/increase incident frequency		1	
6(a)	Collimator: Only gamma rays/photons travel along the axes of lead tubes are		1	6.5.2
	detected / ensures only photons originating from directly below that point reach the scintillator			AO1
	Scintillator: A gamma ray photon produces thousands/many photons of		1	
	(visible) light.			
	Photomultiplier: An electrical pulse is produced from each photon of visible		1	
	light /one electron released, accelerated and then releases 4 more etc until electric pulse achieved			

Question	Answers	Extra information	Mark	AO Spec reference
(b)	Fluorine-18		1	6.5.2 AO1
(c)	Any four from:Fluorine-18 beta minus decay/releases positrons	Max 4	1	6.5.2 AO1
	Annihilation when electron meets positronPair of gamma photons produced		1	
	 Conservation of momentum /photons have equal and opposite momenta 		1	
	 Gamma photons are detected at different times at opposite points. Array of gamma cameras around the patient Computer calculates of point of origin using Distance = speed of light × time difference 		1	
(d)	$E = mc^{2}$ $E = 2 \times 9.11 \times 10^{-31} \times (3 \times 10^{8})^{2}$		1	6.4.4 2.1.2
	Total $E = 1.6398 \times 10^{-13} \text{ J}$ $E \text{ of 1 photon} = 8.199 \times 10^{-14} \text{ J}/1.6 \times 10^{-19}$ E of 1 photon = 0.51 MeV		1	AO2
7(a)	$\frac{1}{t_{\rm e}} = \frac{1}{t_{\rm p}} + \frac{1}{t_{\rm b}}$ 1/t _e = 1/21 700 + 1/86 400		1	M2 A03
	$t_{\rm e}$ = 17 300 s $t_{\rm e}$ = 4.8 hours.		1	
(b)	$\lambda = \ln 2/t_{1/2}$ $\lambda = \ln 2/4.8 = 0.144 \text{ h}^{-1}$	1 mark for answer, 1 for correct unit	1	6.4.3 AO2
	Or $\lambda = \ln 2/17300 = 4.0 \times 10^{-5} \text{ s}^{-1}$	Unrounded answer gives $4.0 \times 10^{-5} \text{ s}^{-1}$	1	

Question	Answers	Extra information	Mark	AO Spec reference
(c)	Use of $A = A_0 e^{-\lambda t}$ $t = 2 \times 24 \times 60 \times 60$ s or $t = 2 \times 24$	decay constant and time must be in	1	6.4.3
	$A = 4.0 \times 10^3$ Bg	same units	1	AO2
	$A = 4.0 \times 10^{-10}$ Bq	using hours gives $A = 4.0 \times 10^3$ Bq		
(d)	Allow time between 1 and 5 hours	Allow any sensible suggestion	1	6.5.2
	By 5 hours activity halved so needs to be within that time		1	A03
	But needs time to be taken up by tissues so greater than 1 hour		1	
8(a)	Thermionic emission		1	6.5.1
				AO1
(b)(i)	To prevent collisions of electrons with molecules		1	6.5.1
				AO1
(ii)	To stop the target overheating/melting		1	6.5.1
				AO1
(c)	Use of $E = eV$ $E = hc/\lambda$ or $eV = hc/\lambda$		1	4.5.1
	$\lambda = hc / eV = 6.63 \times 10^{-34} \times 3 \times 10^8 / 1.6 \times 10^{-19} \times 180\ 000$		1	AO2
	$\lambda = 6.9 \times 10^{-12} \text{ m}$		1	
(d)	Use of $Q = It$ or number of photons needed = 1.2/eV = 4.166×10 ¹³		1	4.1.1
	Number of electrons per second = $25 \times 10^{-3} / 1.6 \times 10^{-19}$			4.5.1
	1% photons produced = $0.01 \times 25 \times 10^{-3} / 1.6 \times 10^{-19}$		1	AO3
	Only 4% produced used		1	
	photons per second= $0.04 \times 0.01 \times 25 \times 10^{-3} / 1.6 \times 10^{-19} = 6.25 \times 10^{13}$ per second		1	
	Time = number of photons/photons per second			
	Time = $4.1666 \times 10^{13} / 6.25 \times 10^{13} = 0.67 \text{ s}$			