A Level OCR Physics

Chapter 24 Medical imaging

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	A (top line labelled) This is because the attenuation coefficient for muscle is less than bone/gradient less/X-rays absorbed less by muscle	Allow counter arguments i.e. muscle greater attenuation coefficient	1 1	$\begin{aligned} & 6.5 .1 \\ & \text { AO1 } \end{aligned}$
(b)	Use of intercept - either line extrapolated $\begin{aligned} & \ln I_{0}=6.9 \\ & I_{0}=990 \mathrm{~W} \end{aligned}$		1 1	$\begin{aligned} & 6.5 .1 \\ & 1.1 .3 \\ & 1.1 .4 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	$\begin{aligned} & I=I_{0} e^{-\mu x} \\ & \ln I=\ln I_{0}-\mu x \end{aligned}$ attenuation is the gradient Gradient calculated $=0.96$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.5 .1 \\ & 1.1 .3 \\ & 1.1 .4 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	$\begin{aligned} & I=I_{0} e^{-\mu x} \text { when } x=x_{1 / 2} I=I_{0} / 2=0.5 \\ & \ln 0.5=-\mu x_{1 / 2} \\ & -0.693=-\mu x_{1 / 2} \\ & x_{1 / 2}=0.693 / \mu \end{aligned}$	Can also invert and use $\ln 2$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(e)	$\begin{aligned} & \mu x_{1 / 2}=\text { constant } \\ & x_{1 / 2 \mathrm{~A}} / x_{1 / 2 \mathrm{~B}}=\mu_{\mathrm{B}} / \mu_{\mathrm{A}} \end{aligned}$ Calculate gradient of line $\mathrm{B}=2.8 x_{1 / 2 \mathrm{~A}} \quad / x_{1 / 2 \mathrm{~B}}=2.8 / 0.96=2.9$ times		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
2(a)	Any four from: - Piezoelectric effect - alternating/high frequency pd/emf applied - crystal expands and contracts - vibration of faces produces ultrasound/pressurewaves/greater than 20 kHz - backing material damps/stops vibrations	Must contain at least one point about received signal for full marks.	Max 4	$\begin{aligned} & 6.5 .3 \\ & \text { AO1 } \end{aligned}$

A Level OCR Physics

Chapter 24 Medical imaging

Question	Answers	Extra information	Mark	AO Spec reference
	- short pulses - received signals cause crystal to vibrate - producing alt pd across the crystal			
(b)	Signal reflected/transmitted at boundary between two media proportion reflected depends on the acoustic impedance of each medium.		1 1	$\begin{aligned} & 6.5 .3 \\ & \text { AO1 } \end{aligned}$
(c)	Correctly identifying B and C $\begin{aligned} & T=3 \times 2.5 \times 10^{-6} \mathrm{~s}=7.5 \times 10^{-6} \mathrm{~s} \\ & 2 D=s \times t=4080 \times 7.5 \times 10^{-6}=0.031 \mathrm{~m} \\ & D=0.015 \mathrm{~m} \end{aligned}$	Allow 2 marks for correct working but wrong section identified	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 6.5 .3 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	$\begin{aligned} & v=f \lambda \\ & \lambda=4080 / 8 \times 10^{6}=5.1 \times 10^{-4} \mathrm{~m} \end{aligned}$		1	$\begin{aligned} & 4.4 .1 \\ & \text { AO1 } \end{aligned}$
(e)	The resolution is the ability to distinguish between objects close together (wtte) the smaller the wavelength the greater detail it is possible to see/mention of diffraction.		1 1	$\begin{aligned} & 2.2 .1 \\ & \mathrm{AO} 2 \end{aligned}$
3(a)	These cannot pass through tissue so not needed for diagnosis/ are absorbed by tissue increasing harm/risk.		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(b)	$\begin{aligned} & I=P / A \\ & I=1 \times 10^{-3} / \pi \times\left(0.75 \times 10^{-3}\right)^{2}=570 \\ & \mathrm{~W} \mathrm{~m}^{-2} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 4.4 .1 \\ \text { A02 } \end{gathered}$
(c)	Decrease in intensity, decrease increasing at 3 cm then more steadily at 4.5 cm clear exponential drop shown for 1.5 cm of bone suitably labelled	Values of intensity can be ignored looking for contrast between bone and muscle.	1 1	$\begin{aligned} & 6.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Max 3		Max 3	6.5.1

A Level OCR Physics

Chapter 24 Medical imaging

Question	Answers	Extra information	Mark	AO Spec reference
	- muscle and tissue have similar attenuation coefficients - heart does not stay still for long - image captured quickly/short exposure - contrast used/barium/iodine - with high coefficient/high Z.			AO2
4(a)	Pair production		1	$\begin{aligned} & 6.5 .1 \\ & \text { AO1 } \end{aligned}$
(b)	Any two from: Photoelectric effect: X-ray photon ejects/removes an electron Compton (scattering): Photon emerges with less energy/ longer wavelength/lower frequency and an electron escapes/ejected (from the atom) Scattering: Photon is scattered by an electron	Both name and description needed for mark	Max 2	$\begin{aligned} & 6.5 .1 \\ & \text { AO1 } \end{aligned}$
(c)	Level 3 (5-6 marks) Clear description of the scan procedure and how 3D image formed There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description of the scan procedure and a limited description of how 3D image formed There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description of scan procedure or how 3D image formed The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.	Indicative points: Scan procedure: - X-ray tubes and detectors rotated round the body fan shaped/thin beam of X-rays 2D /cross-section slice of the patient X-ray tubes move/spiral across the body. Attenuated by different amounts by different tissues - Intensity of transmitted X-rays recorded by detectors 3D image formation: - Images are transmitted to a	Max 6	$\begin{aligned} & 6.5 .1 \\ & \text { AO1 } \end{aligned}$

A Level OCR Physics

Chapter 24 Medical imaging

Question	Answers	Extra information	Mark	AO Spec reference
	0 marks No response or no response worthy of credit	computer - Computer compiles 2D slices to build up a 3D image		
(d)	Max 2 from: - patients are exposed to ionising radiation - increased risk of cancer - expensive - time consuming/waste of resources		1 1	$\begin{aligned} & 6.5 .1 \\ & \text { AO2 } \end{aligned}$
5(a)	The acoustic impedance of air is too different from skin / too much reflected from skin. Gel has similar acoustic impedance to skin/tissue.		1 1	$\begin{aligned} & 6.5 .3 \\ & \text { AO1 } \end{aligned}$
(b)	$\begin{aligned} & \Delta f l f=2 v \cos \theta / c \\ & \cos 90=0 \text { so no measurements possible. } \end{aligned}$	Accept that there is no movement towards/away from detector so no Doppler Shift can be recorded	1	$\begin{aligned} & 6.5 .3 \\ & \text { AO1 } \end{aligned}$
(c)	$\begin{aligned} & \Delta f f f=2 v \cos \theta / c \\ & \Delta f=2 v f \cos \theta / c=2 \times 0.12 \times 5 \times 10^{6} \times \cos 50 / 1600 \\ & \Delta f=480 \mathrm{~Hz} \end{aligned}$		1 1	$\begin{aligned} & 6.5 .3 \\ & \text { AO2 } \end{aligned}$
(d)	Small change in frequency/reflected frequency 4.999×10^{6} - need sensitive scale to detect change Decrease the angle between blood vessel/increase incident frequency		1 1	$\begin{aligned} & 6.5 .3 \\ & \text { AO3 } \end{aligned}$
6(a)	Collimator: Only gamma rays/photons travel along the axes of lead tubes are detected / ensures only photons originating from directly below that point reach the scintillator Scintillator: A gamma ray photon produces thousands/many photons of (visible) light. Photomultiplier: An electrical pulse is produced from each photon of visible light /one electron released, accelerated and then releases 4 more etc until electric pulse achieved		1 1 1	$\begin{aligned} & 6.5 .2 \\ & \text { AO1 } \end{aligned}$

A Level OCR Physics

Chapter 24 Medical imaging

Question	Answers	Extra information	Mark	AO Spec reference
(b)	Fluorine-18		1	6.5 .2
AO1				

A Level OCR Physics

Chapter 24 Medical imaging

Question	Answers	Extra information	Mark	AO Spec reference
(c)	$\begin{aligned} & \text { Use of } A=A_{0} e^{-\lambda t} \quad t=2 \times 24 \times 60 \times 60 \mathrm{~s} \text { or } t=2 \times 24 \\ & A=4.0 \times 10^{3} \mathrm{~Bq} \end{aligned}$	decay constant and time must be in same units using hours gives $A=4.0 \times 10^{3} \mathrm{~Bq}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.4 .3 \\ & \text { AO2 } \end{aligned}$
(d)	Allow time between 1 and 5 hours By 5 hours activity halved so needs to be within that time But needs time to be taken up by tissues so greater than 1 hour	Allow any sensible suggestion	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 6.5 .2 \\ \text { A03 } \end{gathered}$
8(a)	Thermionic emission		1	$\begin{aligned} & 6.5 .1 \\ & \text { AO1 } \end{aligned}$
(b)(i)	To prevent collisions of electrons with molecules		1	$\begin{aligned} & 6.5 .1 \\ & \text { AO1 } \end{aligned}$
(ii)	To stop the target overheating/melting		1	$\begin{aligned} & 6.5 .1 \\ & \text { AO1 } \end{aligned}$
(c)	$\begin{aligned} & \text { Use of } E=e V \quad E=h c / \lambda \text { or } e V=h c / \lambda \\ & \lambda=h c l e V=6.63 \times 10^{-34} \times 3 \times 10^{8} / 1.6 \times 10^{-19} \times 180000 \\ & \lambda=6.9 \times 10^{-12} \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Use of $Q=I t$ or number of photons needed $=1.2 / \mathrm{eV}=4.166 \times 10^{13}$ Number of electrons per second $=25 \times 10^{-3} / 1.6 \times 10^{-19}$ 1% photons produced $=0.01 \times 25 \times 10^{-3} / 1.6 \times 10^{-19}$ Only 4\% produced used photons per second $=0.04 \times 0.01 \times 25 \times 10^{-3} / 1.6 \times 10^{-19}=6.25 \times 10^{13}$ per second Time $=$ number of photons/photons per second Time $=4.1666 \times 10^{13} / 6.25 \times 10^{13}=0.67 \mathrm{~s}$		1 1 1 1	$\begin{aligned} & 4.1 .1 \\ & 4.5 .1 \\ & \text { AO3 } \end{aligned}$

