A Level OCR Physics

Chapter 21 Electric fields

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	Direction of arrow from centre of gold nucleus directly away from X	Judge by eye	1	$\begin{aligned} & 6.2 .1 \\ & \text { AO1 } \end{aligned}$
(b)	$\begin{aligned} & 6.2 \mathrm{MeV}=6.2 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J} \\ & K E=1 / 2 m v^{2} \\ & v^{2}=2 \mathrm{KE} / \mathrm{m}=2 \times 6.2 \times 10^{6} \times 1.6 \times 10^{-19} / 6.64 \times 10^{-27} \mathrm{~kg} \\ & v=1.73 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		1 1	$\begin{aligned} & 3.3 .2 \\ & 4.5 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	$\begin{aligned} & \Delta W=Q \Delta V \text { sp EPE }=V \times Q \\ & 1 / 2 m v^{2}=Q q / 4 \pi \varepsilon_{0} r \\ & 1 / 2 m v^{2}=Z e \times 2 e / 4 \pi \varepsilon_{0} r_{\mathrm{c}} \\ & r_{\mathrm{c}}=Z e^{2} / \pi \varepsilon_{0} m v^{2} \end{aligned}$	Must be clear how the 4 cancelled - watch for 2 disappearing	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .4 \\ & \text { AO3 } \end{aligned}$
(d)	$\begin{aligned} & Z=79 \\ & r_{\mathrm{c}}=Z e^{2} / \pi \varepsilon_{\mathrm{o}} m v^{2}=79 \times\left(1.6 \times 10^{-19}\right)^{2} / \pi \times 8.85 \times 10^{-12} \times 6.64 \times 10^{-27} \times \\ & \left(1.73 \times 10^{7}\right)^{2} \\ & r_{\mathrm{c}}=3.7 \times 10^{-14} \end{aligned}$		1 1	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
2(a)	Lines leaving spheres perpendicular to surface Arrows from positive Suitable pattern between repelling spheres		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .1 \\ & \text { AO1 } \end{aligned}$
(b)	One problem with one related solution eg difficulty of affecting the field using metal instruments use wooden ruler difficulty in measuring distances between curved objects set up ruler with set squares fixed or use light and measure distance between shadows		1 1	$\begin{aligned} & 1.1 .2 \\ & \text { AO3 } \end{aligned}$
(c)	$\begin{aligned} & F \propto 1 / r^{2} \text { or } F=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r^{2} \\ & F r^{2}=\text { constant or } m r^{2}=\mathrm{constant} \end{aligned}$	Constant if you don't change units $=33000$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .2 \\ & \mathrm{AO} 2 \end{aligned}$

A Level OCR Physics

Chapter 21 Electric fields

Question	Answers	Extra information	Mark	AO Spec reference
	Data tested for at least 3 data sets and conclusion $\begin{aligned} & \text { e.g. } 0.02^{2} \times(0.0827 \times 9.81)=3.2 \times 10^{-4}\left(\mathrm{~N} \mathrm{~m}^{2}\right) \\ & 0.025^{2} \times 0.053 \times 9.81=3.2 \times 10^{-4} \\ & 0.030^{2} \times 0.0368 \times 9.81=3.2 \times 10^{-4} \end{aligned}$		1	
(d)	$\begin{aligned} & F=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r^{2} \\ & Q^{2}=F r^{2} 4 \pi \varepsilon_{0} \\ & Q^{2}=3.2 \times 10^{-4} \times 4 \pi \times 8.85 \times 10^{-12} \\ & Q=1.9 \times 10^{-7} \mathrm{C} \end{aligned}$	Allow using a pair of values from table for full marks	1 1	$\begin{aligned} & 6.2 .2 \\ & \text { AO2 } \end{aligned}$
3(a)	The potential difference between the lines is constant but the distance is not.		1	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
(b)	At least 4 lines drawn perpendicular to surface of the cable arrows pointing away from the cable		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .1 \\ & \text { AO1 } \end{aligned}$
(c)	$\begin{aligned} & V \propto 1 / r \\ & V r=\text { constant } \\ & 300 \times 10=200 \times d \\ & d=15 \mathrm{~cm} \end{aligned}$		1 1	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	P is at a distance of 12.5 cm $\begin{aligned} & 300 \times 10=12.5 \times V \\ & V=240 \mathrm{~V} \end{aligned}$		1 1	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
4(a)	At least 6 lines drawn - equidistant arrows pointing down		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .1 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	Path deflected upwards	Ignore size of deflection	1	$\begin{aligned} & 6.2 .3 \\ & \text { AO1 } \end{aligned}$
(c)	Use of $E=F / Q=V / d$ or $F=m a$		1	3.2.1

A Level OCR Physics

Chapter 21 Electric fields

Question	Answers	Extra information	Mark	AO Spec reference
	$\begin{aligned} & F / Q=V / d \\ & F=V Q / d \\ & m a=V Q / d \\ & a=V Q / m d \\ & a=1500 \times 1.6 \times 10^{-19} / 9.11 \times 10^{-31} \times 0.025=1.1 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$		1 1	$\begin{aligned} & 6.2 .3 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Time between plates $=$ length of plates/ speed of electrons $t=0.04 / 3 \times 10^{7}=1.3 \times 10^{-9} \mathrm{~s}$ Use of suvat for vertical displacement $\begin{aligned} & s=u t+1 / 2 a t^{2} \text { and } u=0 \\ & s=1 / 21.1 \times 10^{16} \times\left(1.3 \times 10^{-9}\right)^{2} \\ & s=0.01 \mathrm{~m}=10 \mathrm{~mm} \text { or } 0.0098 \mathrm{~m}=9.8 \mathrm{~mm} \end{aligned}$ Distance from top plate $=12.5 \mathrm{~mm}-10 \mathrm{~mm}=2.5 \mathrm{~mm}$ (or 2.7 mm)	Use of rounded numbers gives $s=8.5 \mathrm{~mm}$ and so final answer $=4 \mathrm{~mm}$	1 1 1 1	$\begin{aligned} & 3.1 .2 \\ & 3.1 .3 \\ & 6.2 .3 \\ & \mathrm{AO} 2 \end{aligned}$
5(a)	Use of $C=Q / V$ $\begin{aligned} & V=Q / 4 \pi \varepsilon_{0} R \\ & C=Q 4 \pi \varepsilon_{0} R / Q=4 \pi \varepsilon_{0} R \end{aligned}$	Clear substitution seen for second mark	1 1	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	$\begin{aligned} & C=4 \pi \varepsilon_{0} R=4 \times \pi \times 8.85 \times 10^{-12} \times 0.20=2.2 \times 10^{-11} \\ & \mathrm{~F} \text { (Farads) } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 1 \end{aligned}$
(c)	$\begin{aligned} & E=V / r \\ & V=E r=3 \times 10^{6} \times 0.20=6 \times 10^{5} \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .4 \\ & 6.2 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Use of $Q=V C=2.2 \times 10^{-11} \times 6 \times 10^{5}=1.3 \times 10^{-5} \mathrm{C}$ Number of excess charges $=1.3 \times 10^{-5} \mathrm{C} / 1.6 \times 10^{-19} \mathrm{C}=8.3 \times 10^{13}$	Be aware of possible e.c.f. from answer to 5.2 and 5.3 Could also use $V=Q / 4 \pi \varepsilon_{0} R$	1 1	$\begin{aligned} & 6.1 .1 \\ & \mathrm{AO} 2 \end{aligned}$
6(a)	$\begin{aligned} & F=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r^{2} \\ & F=\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi \times 8.85 \times 10^{-12} \times\left(5.3 \times 10^{-11}\right)^{2} \end{aligned}$		1	$\begin{aligned} & 6.2 .2 \\ & \text { AO2 } \end{aligned}$

A Level OCR Physics

Chapter 21 Electric fields

Question	Answers	Extra information	Mark	AO Spec reference
	$F=8.2 \times 10^{-8} \mathrm{~N}$		1	
(b)	$8.2 \times 10^{-8} \mathrm{~N}$		1	$\begin{aligned} & 6.2 .2 \\ & \text { AO1 } \end{aligned}$
(c)	$\begin{aligned} & F=m a \\ & a=F / m=8.2 \times 10^{-8} \mathrm{~N} / 9.11 \times 10^{-31} \mathrm{~kg}=9.0 \times 10^{22} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$		1	$\begin{aligned} & 3.2 .1 \\ & \text { AO2 } \end{aligned}$
(d)	$\begin{aligned} & E=K E+P E \\ & \Delta W=Q \Delta V \\ & E=1 / 2 m v^{2}-e^{2} / 4 \pi \varepsilon_{0} r \\ & \text { since } m v^{2} / r=e^{2} / 4 \pi \varepsilon_{0} r^{2} \\ & m v^{2}=e^{2} / 4 \pi \varepsilon_{0} r \\ & E=e^{2} / 2 \times 4 \pi \varepsilon_{0} r+-e^{2} / 4 \pi \varepsilon_{0} r=-e^{2} / 8 \pi \varepsilon_{0} r \\ & E=-\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi \times 8.85 \times 10^{-12} \times 5.3 \times 10^{-11} \\ & E=2.2 \times 10^{-18} \mathrm{~J} \\ & E=2.2 \times 10^{-18} \mathrm{~J} / 1.6 \times 10^{-19} \mathrm{~J}=13.57 \mathrm{eV} \end{aligned}$	Also credit for full marks use of $1 / 2 m v^{2}$ and $V=Q / 4 \pi \varepsilon_{0} r\left(\mathrm{EPE}=Q Q / 4 \pi \varepsilon_{0} r\right)$	1	$\begin{aligned} & 6.2 .4 \\ & 5.4 .4 \\ & \text { AO3 } \end{aligned}$
7(a)	$\begin{aligned} & A=120 \times 10^{-4} \mathrm{~m}^{2}=0.012 \\ & C=A \varepsilon_{0} / d \\ & C=0.012 \times 8.85 \times 10^{-12} / 0.1=1.1 \times 10^{-12} \mathrm{~F} \end{aligned}$		1	$\begin{aligned} & 6.2 .3 \\ & \text { AO1 } \end{aligned}$
(b)	$Q=C V=1.1 \times 10^{-12} \mathrm{~F} \times 40=4.2 \times 10^{-11} \mathrm{C}$	possible e.c.f. here from 7(a)	1	$\begin{aligned} & \text { 6.1.1 } \\ & \text { AO1 } \end{aligned}$
(c)	$E=V / d=40 / 0.01=400 \mathrm{~V} \mathrm{~m}^{-1}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .3 \\ & \text { AO2 } \end{aligned}$
(d)	$\begin{aligned} & \Delta W=Q \Delta V \\ & =1.6 \times 10^{-19} \times 40 \mathrm{~V}=6.4 \times 10^{-18} \mathrm{~J} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .3 \\ & \text { AO2 } \end{aligned}$

A Level OCR Physics

Chapter 21 Electric fields

Question	Answers	Extra information	Mark	AO Spec reference
(e)	Level 3 (5-6 marks) Clear description, explanation and suitable calculations. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description and some explanation, or some attempt at description, explanation and calculations. There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description or explanation or calculation The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit	Indicative content: Description - Electron decelerates initially - electron does not reach A / stops / reverses direction - electron stops at halfway point. - electron accelerates back to B - Final kinetic energy = initial kinetic energy Explanations - Electron is attracted by $\mathrm{B} /$ repelled by $\mathrm{A} /$ experiences force to the right - Electron does not have sufficient kinetic energy to reach plate A Calculations - $E=F / Q$ so $F=E Q=400 \times 1.6 \times 10^{-19}$ $C=6.4 \times 10^{-17} \mathrm{~N}$ - $a=F / m=6.4 \times 10^{-17} \mathrm{~N} / 9.11 \times 10^{-31}=$ $7.0 \times 10^{13} \mathrm{~m} \mathrm{~s}^{-2}$ to the right - $K E=20 \mathrm{eV}$ and Work done by electric field $=40 \mathrm{eV}$ so can only reach halfway point - Final $K E=20 \mathrm{eV}$	$\begin{gathered} 5-6 \\ 3-4 \\ 1-2 \\ 0 \end{gathered}$	$\begin{gathered} 6.2 .3 \\ 6.2 .4 \\ 6.2 .1 \\ 3.2 .1 \\ \\ \mathrm{AO} 2 \times 3 \\ \mathrm{AO} 3 \times 3 \end{gathered}$
8(a)	Is the work done in bringing unit positive charge from infinity to that point.	Must include positive	1	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	$V \propto 1 / r$		1	6.2.4

A Level OCR Physics

Chapter 21 Electric fields

Question	Answers	Extra information	Mark	AO Spec reference
	$V r=$ constant Data checked at least three times and conclusion $\begin{aligned} & \text { e.g. } 1800 \times 0.01=18 \\ & 600 \times 0.03=18 \\ & 300 \times 0.06=18 \end{aligned}$		1 1	AO2
(c)	$\begin{aligned} & V=Q / 4 \pi \varepsilon_{0} r \\ & Q=V \times 4 \pi \varepsilon_{0} r=18 \times 4 \times \pi \times 8.85 \times 10^{-12} \\ & Q=2.0 \times 10^{-9} \mathrm{C} \\ & Q=2 \mathrm{nC} \end{aligned}$		1 1	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Draw a tangent to the curve at 3 cm calculate the gradient of the tangent $E=2.1 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}$	Accept range from 1.9 to $2.3 \mathrm{Vm}^{-1}$ Allow 210 if units quoted as $\mathrm{V} \mathrm{cm}^{-1}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .4 \\ & \text { AO3 } \end{aligned}$
(e)	$\begin{aligned} & V \text { at } 6 \mathrm{~cm}=300 \mathrm{~V} \\ & \Delta W=Q \Delta V=4 \times 10^{-9} \times 300=1.2 \times 10^{-6} \mathrm{~J} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$

