

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	Direction of arrow from centre of gold nucleus directly away from X	Judge by eye	1	6.2.1 AO1
(b)	6.2 MeV = $6.2 \times 10^6 \times 1.6 \times 10^{-19} \text{ J}$ KE = $1/2 \text{ mv}^2$		1	3.3.2 4.5.1
	$v^2 = 2 KE/m = 2 \times 6.2 \times 10^6 \times 1.6 \times 10^{-19} / 6.64 \times 10^{-27} \text{ kg}$ $v = 1.73 \times 10^7 \text{ m s}^{-1}$		1	AO2
(c)	$\Delta W = Q \Delta V \text{ sp EPE} = V \times Q$ 1/2 mv ² = Qq/4 \pi \varepsilon_0 r	Must be clear how the 4 cancelled – watch for 2 disappearing	1 1	6.2.4 AO3
	$\frac{1}{2} mv^2 = Ze \times 2e/4 \pi \varepsilon_0 r_c$ $r_c = Ze^2/\pi \varepsilon_0 mv^2$		1	
(d)	Z = 79 $r_{\rm c} = Ze^2 / \pi \varepsilon_0 mv^2 = 79 \times (1.6 \times 10^{-19})^2 / \pi \times 8.85 \times 10^{-12} \times 6.64 \times 10^{-27} \times (1.73 \times 10^7)^2$		1	6.2.4 AO2
	$r_{\rm c} = 3.7 \times 10^{-14}$		1	
2(a)	Lines leaving spheres perpendicular to surface Arrows from positive Suitable pattern between repelling spheres		1 1 1	6.2.1 AO1
(b)	One problem with one related solution eg difficulty of affecting the field using metal instruments –		1	1.1.2 AO3
	use wooden ruler difficulty in measuring distances between curved objects – set up ruler with set squares fixed or use light and measure distance between shadows		1	
(c)	$F \propto 1/r^2$ or $F = Q_1 Q_2 / 4\pi \varepsilon_0 r^2$ Fr^2 = constant or mr^2 = constant	Constant if you don't change units = 33 000	1 1	6.2.2 AO2

Question	Answers	Extra information	Mark	AO Spec reference
	Data tested for at least 3 data sets and conclusion			
	e.g. $0.02^2 \times (0.0827 \times 9.81) = 3.2 \times 10^{-4} (\text{N m}^2)$ $0.025^2 \times 0.053 \times 9.81 = 3.2 \times 10^{-4}$ $0.030^2 \times 0.0368 \times 9.81 = 3.2 \times 10^{-4}$		1	
(d)	$F = Q_1 Q_2 / 4\pi \varepsilon_0 r^2$ $Q^2 = F r^2 4\pi \varepsilon_0$ $Q^2 = 3.2 \times 10^{-4} \times 4\pi \times 8.85 \times 10^{-12}$	Allow using a pair of values from table for full marks	1	6.2.2 AO2
3(a)	$Q = 1.9 \times 10^{-7}$ C The potential difference between the lines is constant but the distance is not.		1	6.2.4 AO2
(b)	At least 4 lines drawn perpendicular to surface of the cable arrows pointing away from the cable		1	6.2.1 AO1
(c)	$V \propto 1/r$ Vr = constant $300 \times 10 = 200 \times d$		1	6.2.4 AO2
(d)	d = 15 cm <i>P</i> is at a distance of 12.5 cm $300 \times 10 = 12.5 \times V$ V = 240 V		1	6.2.4 AO2
4(a)	At least 6 lines drawn – equidistant arrows pointing down		1	6.2.1 AO1
(b)	Path deflected upwards	Ignore size of deflection	1	6.2.3 AO1
(c)	Use of $E = F/Q = V/d$ or $F = ma$		1	3.2.1

Question	Answers	Extra information	Mark	AO Spec reference
	F/Q = V/d			6.2.3
	F = VQ/d			AO2
	ma = VQ/d		1	
	a = VQ/md			
	$a = 1500 \times 1.6 \times 10^{-19} / 9.11 \times 10^{-31} \times 0.025 = 1.1 \times 10^{16} \text{ m s}^{-2}$		1	
(d)	Time between plates = length of plates/ speed of electrons	Use of rounded numbers gives $s = 8.5$ mm		3.1.2
	$t = 0.04/3 \times 10^7 = 1.3 \times 10^{-9} \text{ s}$	and so final answer = 4 mm	1	3.1.3
	Use of suvat for vertical displacement			6.2.3
	$s = ut + \frac{1}{2} at^2$ and $u = 0$		1	AO2
	$s = \frac{1}{2} 1.1 \times 10^{16} \times (1.3 \times 10^{-9})^2$			
	s = 0.01 m = 10 mm or 0.0098 m = 9.8 mm		1	
	Distance from top plate = 12.5 mm – 10 mm = 2.5 mm (or 2.7 mm)		1	
5(a)	Use of $C = Q/V$	Clear substitution seen for second mark	1	6.2.4
	$V = Q/4\pi \varepsilon_0 R$			AO1
	$C = Q 4\pi \varepsilon_{\rm o} R / Q = 4\pi \varepsilon_{\rm o} R$		1	
(b)	$C = 4\pi \varepsilon_0 R = 4 \times \pi \times 8.85 \times 10^{-12} \times 0.20 = 2.2 \times 10^{-11}$		1	6.2.4
	F (Farads)		1	AO1
(c)	E = V/r		1	6.2.4
	$V = Er = 3 \times 10^6 \times 0.20 = 6 \times 10^5 \text{ V}$		1	6.2.2
				AO2
(d)	Use of $Q = VC = 2.2 \times 10^{-11} \times 6 \times 10^5 = 1.3 \times 10^{-5} \text{ C}$ Number of excess charges = $1.3 \times 10^{-5} \text{ C}/1.6 \times 10^{-19} \text{ C} = 8.3 \times 10^{13}$	Be aware of possible e.c.f. from answer to 5.2 and 5.3	1	6.1.1
				AO2
		Could also use $V = Q/4\pi \varepsilon_0 R$	1	
6(a)	$F = Q_1 Q_2 / 4\pi \varepsilon_0 r^2$		1	6.2.2
	$F = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (5.3 \times 10^{-11})^2$			AO2

Question	Answers	Extra information	Mark	AO Spec reference
	$F = 8.2 \times 10^{-8} \text{ N}$		1	
(b)	8.2×10 ⁻⁸ N		1	6.2.2 AO1
(c)	F = ma $a = F/m = 8.2 \times 10^{-8} \text{ N/9.11} \times 10^{-31} \text{ kg} = 9.0 \times 10^{22} \text{ m s}^{-2}$		1	3.2.1 AO2
(d)	E = KE + PE $\Delta W = Q\Delta V$ $E = \frac{1}{2} mv^2 - \frac{e^2}{4} \pi \varepsilon_0 r$ since $mv^2/r = \frac{e^2}{4} \pi \varepsilon_0 r^2$ $mv^2 = \frac{e^2}{4} \pi \varepsilon_0 r$ $E = \frac{e^2}{2} \times 4 \pi \varepsilon_0 r + -\frac{e^2}{4} \pi \varepsilon_0 r = -\frac{e^2}{8} \pi \varepsilon_0 r$ $E = -(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times 5.3 \times 10^{-11}$ $E = 2.2 \times 10^{-18} \text{ J}$ $E = 2.2 \times 10^{-18} \text{ J} / 1.6 \times 10^{-19} \text{ J} = 13.57 \text{ eV}$	Also credit for full marks use of 1/2 mv^2 and $V = Q/4 \pi \varepsilon_0 r$ (EPE = $QQ/4 \pi \varepsilon_0 r$)	1 1 1 1	6.2.4 5.4.4 AO3
7(a)	$A = 120 \times 10^{-4} \text{ m}^2 = 0.012$ $C = A\varepsilon_0/d$ $C = 0.012 \times 8.85 \times 10^{-12} / 0.1 = 1.1 \times 10^{-12} \text{ F}$		1 1	6.2.3 AO1
(b)	$Q = CV = 1.1 \times 10^{-12} \text{ F} \times 40 = 4.2 \times 10^{-11} \text{ C}$	possible e.c.f. here from 7(a)	1	6.1.1 AO1
(c)	$E = V/d = 40/0.01 = 400 \text{ V m}^{-1}$		1 1	6.2.3 AO2
(d)	$\Delta W = Q \Delta V$ = 1.6×10 ⁻¹⁹ × 40 V = 6.4×10 ⁻¹⁸ J		1 1	6.2.3 AO2

Question	Answers	Extra information	Mark	AO Spec reference
(e)	Level 3 (5–6 marks)	Indicative content:	5–6	6.2.3
	Clear description, explanation and suitable calculations.	Description	3–4	6.2.4
	There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	 Electron decelerates initially electron does not reach A / stops / 	1–2 0	6.2.1 3.2.1
	Level 2 (3–4 marks)	reverses direction		
	Clear description and some explanation,	electron stops at halfway point.		AO2 × 3
	or some attempt at description, explanation and calculations.	electron accelerates back to B		AO3 × 3
	There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.	 Final kinetic energy = initial kinetic energy 		
	Level 1 (1–2 marks)			
	Limited description or explanation or calculation The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks	Explanations		
		Electron is attracted by B /repelled by A/ experiences force to the right		
		Electron does not have sufficient		
		kinetic energy to reach plate A		
	No response or no response worthy of credit	Calculations		
		• $E = F/Q$ so $F = EQ = 400 \times 1.6 \times 10^{-19}$ $C = 6.4 \times 10^{-17}$ N		
		• $a = F/m = 6.4 \times 10^{-17} \text{ N/9.11} \times 10^{-31} = 7.0 \times 10^{13} \text{ m s}^{-2}$ to the right		
		• <i>KE</i> = 20 eV and Work done by electric field = 40 eV so can only reach halfway point		
		• Final <i>KE</i> = 20 eV		
8(a)	Is the work done in bringing unit positive charge from infinity to that point.	Must include positive	1	6.2.4 AO1
(b)	$V \propto 1/r$		1	6.2.4

Question	Answers	Extra information	Mark	AO Spec reference
	Vr = constant			AO2
	Data checked at least three times and conclusion		1	
	e.g. 1800 × 0.01 = 18			
	600 × 0.03 = 18			
	300 × 0.06 = 18		1	
(c)	$V = Q/4 \pi \varepsilon_0 r$		1	6.2.4
	$Q = V \times 4 \pi \varepsilon_0 r = 18 \times 4 \times \pi \times 8.85 \times 10^{-12}$			AO2
	$Q = 2.0 \times 10^{-9} \mathrm{C}$			
	$\tilde{Q} = 2 \text{ nC}$		1	
(d)	Draw a tangent to the curve at 3 cm	Accept range from 1.9 to 2.3 Vm ⁻¹	1	6.2.4
	calculate the gradient of the tangent		1	AO3
	$E = 2.1 \times 10^4 \text{ V m}^{-1}$	Allow 210 if units quoted as V cm ⁻¹	1	
(e)	<i>V</i> at 6 cm = 300 V		1	6.2.4
	$\Delta W = Q \Delta V = 4 \times 10^{-9} \times 300 = 1.2 \times 10^{-6} \text{ J}$		1	AO2