

| Question  | Answers                                                                                                                                                                                                                                                                                                                              | Extra information                                                                                                                                     | Mark        | AO | Spec reference |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|----------------|
| 1 (a) (i) | $Q = CV = 470 \times 10^{-6} \times 6 = 2.82 \times 10^{-3} \text{ C}$<br>$I = V/R = 6 \text{ V}/50\ 000\ \Omega = 1.2 \times 10^{-3} \text{ A}$                                                                                                                                                                                     |                                                                                                                                                       | 1<br>1      | 2  | 6.1.1          |
| (ii)      | Time for p.d. to drop to half its value = $RC \ln 2 = 5000 \times 470 \times 10^{-6} \times 0.693 =$<br>1.62 s                                                                                                                                                                                                                       | Graph with scales/labelled axes<br>extending to 6 seconds<br>Initial p.d. = 6 V and exponential<br>shape by eye<br>Evidence for p.d. halving in 1.6 s | 1           | 2  | 6.1.3          |
| (b)       | Original time constant = $RC$ = 5000 × 470 × 10 <sup>-6</sup> = 2.35<br>New time constant = 2.5 × 2.35 = 5.88 s<br>Effective capacitance = 5.88/5000 = 1.12 × 10 <sup>-3</sup> F<br>Capacitances in parallel add so $C_{\text{total}} = C + 470 \times 10^{-6}$ F = 1.12 × 10 <sup>-3</sup> F<br>$C = 0.7 \times 10^{-3}$ F = 700 µF | Calculation of new time constant/<br>method involving time constant<br>Answer                                                                         | 1<br>1<br>1 | 3  | 6.1.3          |



| Question  | Answers                                                                                                                                                                                                         | Extra information                                                    | Mark   | AO | Spec reference |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|----|----------------|
| (c)       | Assumption is that the voltmeter has infinite resistance<br>If the voltmeter has a large but finite resistance this reduces the resistance of<br>the circuit because there are now two resistances in parallel. | Effect of resistance of voltmeter on resistance of circuit           | 1      | 1  | 6.1.3          |
|           | The time constant will be smaller than it should be, so the unknown capacitance is larger than the value in <b>1(b)</b>                                                                                         | Effect on capacitance                                                | 1      | 3  |                |
| 2 (a) (i) | From the graph, the time for the p.d. to halve is 1.4 cm = $1.4 \times 0.1$ ms = $1.4 \times 10^{-4}$ s.                                                                                                        | Use of graph to find time to halve                                   | 1      | 2  | 6.1.3          |
|           | Time to halve = $RC \ln 2 = 0.693 RC$<br>Time constant = $RC$ = time to halve/0.693<br>= $2.02 \times 10^{-4}$ s                                                                                                | Answer<br>Accept use of time taken to drop to<br>1/e (2.21V) = 0.2ms | 1      |    |                |
| (ii)      | C = time constant/R<br>= $2.02 \times 10^{-4} \text{ s/}10^{4}$<br>= $2.02 \times 10^{-8} \text{ F}$                                                                                                            | Use of time constant to find C<br>Accept ecf from a)i)               | 1      | 2  | 6.1.3          |
| (b)       | Curve that starts at half the p.d. on the <i>y</i> -axis, and has $t y_2$ that is double the original value                                                                                                     |                                                                      | 1      | 3  | 6.1.3          |
|           | If the resistance doubles the maximum current will halve, so the maximum p.d. will halve                                                                                                                        |                                                                      | 1      |    |                |
|           | If the resistance is doubled the time constant is doubled, so the time to halve the p.d. is also doubled.                                                                                                       |                                                                      | 1      |    |                |
| (c)       | Use the p.d. and resistance to work out the current using $I = V/R$                                                                                                                                             | Conversion of p.d. to current<br>How to find charge from area        | 1<br>1 | 3  | 6.1.3          |
|           | The area under the graph is the charge stored, work out the charge represented by each square using $Q = It$ , count squares and multiply                                                                       | Accept find area under graph and divide by R for 2 marks             |        |    |                |
| 3 (a) (i) | When the switch is closed there is a potential difference across the resistor A current flows, so the charge on the capacitor decreases.                                                                        | Link between p.d. and current                                        | 1      | 1  | 6.1.1          |



| Question |                                                                                                    |                                 | Answers                     |                             | Extra information                                   | Mark | AO | Spec reference |
|----------|----------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------------------------------------|------|----|----------------|
|          | As the charge decreases the p.d. decreases ( $V = Q/C$ ), so the current decreases in the same way |                                 |                             | Link to charge on capacitor | 1                                                   |      |    |                |
|          | The rate of chang relationship is a n                                                              | e of p.d. depe<br>egative expon | nds on the charge<br>ential | e, and hence p              | Explanation of exponential                          | 1    |    |                |
| (ii)     | Time in minutes                                                                                    | P.d. in<br>volts                | Time in seconds             | ln <i>V</i>                 | Calculations of <i>t</i> in seconds and ln <i>V</i> | 1    | 2  | 6.1.3          |
|          | 0                                                                                                  | 6.25                            | 0                           | 1.832581                    |                                                     |      |    |                |
|          | 10                                                                                                 | 2.6244                          | 600                         | 0.964852                    |                                                     |      |    |                |
|          | 20                                                                                                 | 1.1664                          | 1200                        | 0.153922                    |                                                     |      |    |                |
|          | 30                                                                                                 | 0.49                            | 1800                        | -0.71335                    |                                                     |      |    |                |
|          | 40                                                                                                 | 0.2116                          | 2400                        | -1.55306                    | Graph starting at $(0,0)$ points                    | 1    |    |                |
|          | 50                                                                                                 | 0.09                            | 3000                        | -2.40795                    | plotted, linear line of best fit                    |      |    |                |
|          | 60                                                                                                 | 0.04                            | 3600                        | -3.21888                    | Correct labels/units                                | 1    |    |                |
|          | InV -1 -1 -2 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4                                             | 0 1580 2000 2<br>time in second | 500 3000 3500 400           | 00                          |                                                     |      |    |                |



| Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Extra information                                                                                                                                                                                        | Mark                       | AO | Spec reference |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|----------------|
| (iii)    | $V = V_0 e^{\frac{-t}{RC}}$                                                                                                                                                                                                                                                                                                                                                                                                                                              | Taking natural logs of both sides of equation                                                                                                                                                            | 1                          | 2  | 6.1.3          |
|          | $ln V = ln V_0 - \frac{t}{RC}$<br>So a graph of ln V against t has<br>- y-intercept = ln V_0<br>- gradient = -1/RC                                                                                                                                                                                                                                                                                                                                                       | <i>y</i> -intercept correct<br>Gradient correct                                                                                                                                                          | 1<br>1                     |    |                |
| (b)      | For capacitors in series $1/C_{total} = 1/C_1 + 1/C_2$<br>If the capacitors have the same value the total capacitance is halved<br>The time constant is halved so the gradient will be doubled<br>The <i>y</i> -intercept is the same                                                                                                                                                                                                                                    | Use of equation<br>Effect on gradient<br>Effect on intercept                                                                                                                                             | 1<br>1<br>1                | 3  | 6.1.1          |
| 4 (a)    | $E = \frac{1}{2} CV^{2}$<br>= $\frac{1}{2} \times 330 \times 10^{-6} \times (12.0)^{2}$<br>= 2.38×10 <sup>-2</sup> J                                                                                                                                                                                                                                                                                                                                                     | Answer                                                                                                                                                                                                   | 1                          | 2  | 6.1.2          |
| (b)      | Resistance of lamp = $12/0.8 = 15 \Omega$<br>Time to discharge to $37\% = RC = 330 \times 10^{-6} \times 15 = 4.95 \times 10^{-3}$ s<br>Approximately $t = 5$ ms $\times 4/3 = 6.7$ ms<br>Power = energy/time = $2.38 \times 10^{-2}$ J/6.7 $\times 10^{-3}$ s<br>= $3.57$ W<br>Or = 4.8 W if 5 ms used<br>You may only just see this, as it is about half/one quarter the power the lamp<br>used under normal conditions, where power = $12$ V $\times 0.8$ A = $9.6$ W | Calculation of resistance<br>Explicit use of <i>RC</i> as time for p.d. to<br>reduce to 37%<br>ecf from their time<br>Answer<br>Calculation of power<br>Appropriate comment with<br>numerical comparison | 1<br>1<br>1<br>1<br>1<br>1 | 3  | 6.1.2          |
| (c)      | The energy stored would be multiplied by 4 as energy stored depends on $V^2$<br>The time is the same                                                                                                                                                                                                                                                                                                                                                                     | Reference to $E$ proportional to $V^2$                                                                                                                                                                   | 1                          | 3  | 6.1.2          |



| Question  | Answers                                                                                                                                                                                                                                                                                    | Extra information                                                                                                                                            | Mark | AO | Spec reference |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|----------------|
|           | Power would be multiplied by 4, this would definitely be observable                                                                                                                                                                                                                        | Effect on what is observed                                                                                                                                   | 1    |    |                |
| (d)       | The energy stored is about 100/2.38×10 <sup>-2</sup> J ~ 4 000 × the energy calculated $E = \frac{1}{2} CV^2$ so energy $\propto C$ , and $V^2$<br>You would need to charge this capacitor to a p.d. of $12V \times \sqrt{4000} = 760$ V<br>Or use a capacitance of 4000 × 330 µF = 1.32 F | Calculations that support increase in<br>energy by a factor of approximately<br>4000<br>Both calculations<br>Precise calculation using $F = \frac{1}{2}CV^2$ | 1    | 3  | 6.1.2          |
|           | 1.39 F is a very large capacitor, so the energy stored is achieved by increasing the p.d. and increasing the capacitance.                                                                                                                                                                  | produces:<br>p.d. = 780 V<br>capacitance = 1.39 F<br>Comment on size of capacitance                                                                          | 1    |    |                |
| 5 (a) (i) | 14<br>12<br>10<br>8<br>pd/V<br>6<br>4                                                                                                                                                                                                                                                      | Exponential growth by eye<br>Asymptotic to 12 V<br>Only a sketch needed, so no values<br>needed on <i>x</i> -axis                                            | 1    | 1  | 6.1.1          |
|           | $\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{2} \int_{0}^{30} \int_{0}^{40} \int_{0}^{50} \int_{0}^{60} \int_{0}^{70}$<br>Initially there is no charge on the capacitor, so zero p.d., as the capacitor charges the p.d. increases as $V = Q/C$                                       | Comment about shape                                                                                                                                          | 1    |    |                |



| Question | Answers                                                                                                                                                         | Extra information                        | Mark | AO | Spec reference |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|----|----------------|
|          | And increases at a decreasing rate                                                                                                                              |                                          |      |    |                |
| (ii)     | Reducing the resistance, as the current normally decreases as the capacitor charges a smaller resistance is needed to maintain the current at a constant value  | Answer and reason needed for mark        | 1    | 3  | 6.1.3          |
|          | The graph will be a straight line through (0,0) as the p.d. increases at a constant rate                                                                        |                                          | 1    |    |                |
|          | The graph will be horizontal when the capacitor is fully charged                                                                                                |                                          | 1    |    |                |
| (iii)    | Procedure described, for example:                                                                                                                               | Sufficient detail                        |      | 1  | 6.1.3          |
|          | - note the capacitance of the capacitor                                                                                                                         |                                          |      |    |                |
|          | <ul> <li>open the switch and short circuit the capacitor to ensure that it is<br/>uncharged</li> </ul>                                                          | Using the graph to find the time         | 1    |    |                |
|          | <ul> <li>close the switch and reduce the resistance of the variable resistor to<br/>maintain the current at a constant value</li> </ul>                         | Calculating charge from current and time | 1    |    |                |
|          | - when the graph on the computer is horizontal open the switch                                                                                                  |                                          |      |    |                |
|          | <ul> <li>use the graph to find the time it took to charge the capacitor from time<br/>the p.d. started to rise until the time the p.d. was constant.</li> </ul> | Repetition/finding mean                  | 1    |    |                |
|          | <ul> <li>multiply the current by the time to get the charge</li> </ul>                                                                                          |                                          |      |    |                |
|          | <ul> <li>replace the capacitor with one of a different capacitance, and repeat</li> </ul>                                                                       |                                          |      |    |                |
|          | <ul> <li>repeat for a range of capacitors</li> </ul>                                                                                                            |                                          |      |    |                |
|          | <ul> <li>repeat the experiment three times for each capacitor, and calculate the<br/>mean charge stored</li> </ul>                                              |                                          |      |    |                |
|          | <ul> <li>plot a graph of charge against capacitance</li> </ul>                                                                                                  |                                          |      |    |                |
| (b)      | Appropriate suggestion and solution, for example                                                                                                                |                                          | 1    | 1  | 6.1.3          |
|          | The reading on the ammeter will not be constant as it will be difficult to change the resistance to exactly match the exponential decay of current              |                                          |      |    |                |
|          | Repeating the experiment many more times will give a more accurate measurement                                                                                  |                                          | 1    |    |                |
| 6 (a)    | The water molecule aligns with the electric field between the plates so that the                                                                                | Movement of molecule to align with       | 1    | 1  | 6.2.3          |



| Question | Answers                                                                                                                                                                                                                               | Extra information                                                | Mark | AO | Spec reference |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------|----|----------------|
|          | positive side of the molecule $(H^{\scriptscriptstyle +})$ is attracted to the negative plate, and the negative side $(O^{\scriptscriptstyle -})$                                                                                     | field                                                            |      |    |                |
| (b) (i)  | The greater the humidity, the greater the capacitance                                                                                                                                                                                 | Relationship                                                     | 1    | 1  | 6.2.3          |
|          | The water molecules effectively reduce the distance between the plates of the capacitor, and $C = \varepsilon_0 \varepsilon_p A/d$ ,<br><i>C</i> is inversely proportional to <i>d</i> , so as <i>d</i> decreases, <i>C</i> increases | Lifect of water molecules on distance<br>Link to capacitance     | 1    | 2  |                |
|          |                                                                                                                                                                                                                                       |                                                                  | 1    |    |                |
| (ii)     | 500                                                                                                                                                                                                                                   | Graph starting at (0,0), points plotted, linear line of best fit | 1    | 2  | 6.2.3          |
|          |                                                                                                                                                                                                                                       | Correct labels/units                                             | 1    |    |                |
|          | 300 -                                                                                                                                                                                                                                 |                                                                  |      |    |                |
|          |                                                                                                                                                                                                                                       | Values between 280 $\mu F$ and 285 $\mu F$ acceptable            | 1    |    |                |
|          |                                                                                                                                                                                                                                       | Use of ratios of capacitances                                    | 4    |    |                |
|          | 50                                                                                                                                                                                                                                    | Method                                                           | 1    |    |                |
|          | 0 20 40 60 80 100 120<br>relative humidity in%                                                                                                                                                                                        |                                                                  | 1    |    |                |



| Question | Answers                                                                                                                      | Extra information    | Mark | AO | Spec reference |
|----------|------------------------------------------------------------------------------------------------------------------------------|----------------------|------|----|----------------|
|          | When the humidity is zero the capacitance is 390 $\mu$ F, and when it is 100% the capacitance is 450 $\mu$ F,                |                      |      |    |                |
|          | $C_{100} = \varepsilon_0 (\varepsilon_{\rm rw} + \varepsilon_{\rm r}) A/d$ and $C_0 = \varepsilon_0 \varepsilon_{\rm r} A/d$ |                      |      |    |                |
|          | $\frac{C_{100}}{C_0} = \frac{\varepsilon_0(\varepsilon_r + \varepsilon_w)}{d} \times \frac{d}{\varepsilon_0 \varepsilon_r}$  |                      |      |    |                |
|          | $\frac{C_{100}}{C_0} = \frac{\varepsilon_r + \varepsilon_w}{\varepsilon_r} = \frac{450}{390} = 1.15$                         |                      |      |    |                |
|          | $\varepsilon_{\rm r}$ + $\varepsilon_{\rm w}$ = 1.15 $\varepsilon_{\rm r}$                                                   |                      |      |    |                |
|          | $\varepsilon_{\rm w} = 0.15\varepsilon_{\rm r}$                                                                              |                      |      |    |                |
|          | $\varepsilon_{\rm r} = \frac{80}{0.15} = 533$                                                                                |                      |      |    |                |
| (c)      | $C_0 = \varepsilon_0 \varepsilon_r A/d$                                                                                      | Use of equation      | 1    | 2  | 6.2.3          |
|          | $d = \varepsilon_0 \varepsilon_r A / C_0$                                                                                    | ecf from $C_0$ in b) |      |    |                |
|          | $8.85 \times 10^{-12} \times 533 \times (10.8 \times 10^{-3} \times 3.81 \times 10^{-3})$                                    |                      | _    |    |                |
|          | - (390 × 10 <sup>-6</sup> )                                                                                                  | Answer/comparison    | 1    |    |                |
|          | = $5.00 \times 10^{-7}$ m which is about $0.5 \times 10^{-6}$ m.                                                             |                      |      |    |                |
| (d)      | Field strength (assuming parallel plates) = $V/d$ , so $V$ = field strength × $d$ = 94 000 000 × 5×10 <sup>-7</sup> m = 47 V |                      | 1    | 3  | 6.2.3<br>4.2.4 |
|          | $R = \rho l / A = 10^{12} \Omega \mathrm{m} \times 5 \times 10^{-7} / 10.8 \times 10^{-3} \times 3.81 \times 10^{-3}$        | Answer               |      |    |                |
|          | = $1.22 \times 10^{10} \Omega$                                                                                               |                      |      |    |                |
|          | $I = V/R = 47 \text{ V}/1.22 \times 10^{10} \Omega$                                                                          | Answer               | 1    |    |                |
|          | $= 3.87 \times 10^{-9} \text{ A}$                                                                                            | Comment              |      |    |                |
|          | This is an extremely small current that would be very difficult to measure.                                                  |                      | 1    |    |                |



| Question | Answers                                                                                                        | Extra information            | Mark | AO | Spec reference |
|----------|----------------------------------------------------------------------------------------------------------------|------------------------------|------|----|----------------|
|          |                                                                                                                |                              | 1    |    |                |
| 7 (a)    | $C = \varepsilon_0 \varepsilon_r A/d, \ \varepsilon = 1$                                                       | Calculation of capacitance   | 1    | 2  | 6.2.3          |
|          | $Q = CV = 8.87 \times 10^{-13} \times 5000 = 4.43 \times 10^{-9} \text{ C}$                                    | Charge                       | 1    |    |                |
| (b)      | When the ball touches the plate electrons are transferred to it giving the ball a                              | Transfer of electrons used   | 1    | 3  | 6.2.3          |
|          | negative plate                                                                                                 | Correct attraction/repulsion | 4    |    |                |
|          | When it touches the positive plate the electrons are transferred to the plate so it is repelled from the plate |                              | I    |    |                |
| (c)      | $T = 2\pi \sqrt{\frac{l}{g}}$                                                                                  | Use of time period           | 1    | 2  | 5.3.1          |
|          | $= T = 2\pi \sqrt{\frac{0.40}{9.8}} = 1.27 \text{ s}$                                                          | Answer                       | 1    |    |                |
|          | So it would take about 0.63 s to travel between the plates                                                     |                              |      |    |                |
| (d)      | Current = charge/time<br>$- 0.4 + 4.42 + 40^{-9} / 0.62 - 7.0 + 40^{-10} A$                                    | A                            | 1    | 2  | 4.1.1          |
|          | $= 0.1 \times 4.43 \times 10^{\circ} / 0.63 = 7.0 \times 10^{\circ} \text{ A}$                                 | Answer                       | 1    |    |                |
| (e)      | The p.d. would decrease                                                                                        |                              | 1    | 3  | 6.2.3          |
|          | $C = \varepsilon_0 \varepsilon_r A/a$                                                                          |                              |      |    |                |
|          | O = V  soerAld                                                                                                 |                              |      |    |                |
|          | $Qd = V \varepsilon_0 \varepsilon_r A$                                                                         |                              |      |    |                |
|          | P.d. is proportional to $d$                                                                                    |                              | 1    |    |                |
| 8 (a)    | The dielectric would break down/ the capacitor will conduct                                                    |                              | 1    | 1  | 6.2.3          |
| (b)      | $V = V_0 e^{-t/RC}$                                                                                            |                              |      | 2  | 6.1.3          |
|          | $\ln V = \ln V_0 - t/RC$                                                                                       |                              |      |    |                |



| Question | Answers                                                                                                                                          | Extra information                             | Mark | AO | Spec reference |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|----|----------------|
|          | $C = t/R(\ln V_0 - \ln V)$                                                                                                                       | Expression for <i>C</i> , explicit or implied | 1    |    |                |
|          | <i>t</i> = 7200 s, <i>V</i> = 1.5 V,                                                                                                             | Values of $C$ for both initial p.d.s          |      |    |                |
|          | $V_0 = 3V - C = 7200/10\ 000(\ln 3 - \ln 1.5) = 1.0\ F$                                                                                          | Conclusion with reason                        | 1    |    |                |
|          | $V_0 = 6V - C = 7200/10\ 000\ (\ln 6 - \ln 1.5) = 0.51\ F$                                                                                       |                                               |      |    |                |
|          | 1.3 F capacitor chosen from table                                                                                                                |                                               | 1    |    |                |
|          | The operating p.d. for the 0.5 F capacitor is only 3 V                                                                                           |                                               |      |    |                |
| (c)      | $Q = It = 1400 \times 10^{-3} \times 3600 = 5040 \text{ C}$                                                                                      |                                               |      | 3  | 4.1.1          |
|          | $E = QV = 5040 \times 3 = 1.5 \times 10^3 \text{ J}$                                                                                             | Calculation of energy                         | 1    |    | 6.1.2          |
|          | $E = \frac{1}{2}CV^2 = 0.5 \times 0.5 \times 3^2 = 2.25 \text{ J}$                                                                               |                                               |      |    |                |
|          | $E = \frac{1}{2}CV^2 = 0.5 \times 1.3 \times 3^2 = 5.85 \text{ J}$                                                                               | Calculations of energy                        | 1    |    |                |
|          | The energy is much less than that stored in the battery by a factor of 500                                                                       | Comment                                       | 1    |    |                |
| (d)      | The battery has an internal resistance, <i>r</i> , so if a current flows the p.d will be reduced by a p.d. of <i>Ir</i> , $V = \varepsilon - Ir$ | Explanation involving internal resistance     | 1    | 3  | 4.3.2          |
|          | Current in circuit $I = \varepsilon/(R + r)$                                                                                                     |                                               |      |    |                |
|          | Terminal p.d. = $V = \varepsilon - Ir$                                                                                                           | Use of equation                               | 1    |    |                |
|          | $V = \varepsilon - \varepsilon r/(R + r)$                                                                                                        |                                               |      |    |                |
|          | So $r/(r + R) = \frac{1}{2}$                                                                                                                     |                                               |      |    |                |
|          | R is equal to the internal resistance of the battery.                                                                                            | Allower                                       | 1    |    |                |