

Q	Answers	Extra information	Mark	AO	Spec reference
1(a)	luminosity white dwarfs temperature	All three labels correct – 2 marks 1 label correct – 1 mark <i>x</i> -axis labelled – 1 mark Allow giants/red giants/ super giants	3	1	5.5.1
(b)	luminosity white dwarfs temperature	Line from main sequence area to red giants Line from giants to white dwarf Arrow to show direction	1 1 1	1	5.5.1
(c)	The amount of hydrogen fuel / mass The rate of fusion/using up of nuclear fuel / luminosity		1 1	1	5.5.1
(d)	When fusion ends, outer material will be pushed away to form a planetary nebula. Core remains behind as the white dwarf		1	2	5.5.1
(e)	As gravity pulls matter in atoms are forced together, but electrons with the same spin cannot occupy the same (quantum) state This produces electron degeneracy pressure that counteracts the force of gravity	Electrons cannot occupy the same state Electron degeneracy	1 1	2	5.5.1

Q	Answers	Extra information	Mark	AO	Spec reference
(f)	Maximum mass is the Chandrasekhar limit/maximum mass is 1.44 × mass of the Sun		1	1	5.5.1
2(a)	You need to give electrons energy to ionise them / get them out of the atom		1	1	5.5.2
(b)	$\Delta E = \frac{hc}{\lambda} \text{ so } \lambda = \frac{hc}{\Delta E}$			2	5.5.2
	$\Delta E = \left(-4.3 \times 10^{-19}\right) - \left(-8.9 \times 10^{-19}\right)$	ΔE correct	1		
	$= 4.6 \times 10^{-19} $ J	Substitution	1		
	$\lambda = \frac{hc}{\Delta E} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4.6 \times 10^{-19}}$	Answer	1		
	$= 4.3(2) \times 10^{-7} \text{ m}$				
(c)	Correct suggestions e.g.: If the gas was heated, e.g. as part of a star undergoing fusion, then you would observe an emission spectrum	One mark for each suggestion	2	1	5.5.2
	If the gas lies between the observer and a star that emits all wavelengths of radiation then an absorption spectrum is observed				
(d)	No			3	5.5.2
	The emission of the photon of wavelength 432 nm is close to line 3 in the transition to level 2	Comment about line calculated in part 2(b)	1		
	The other 2 possible transitions are between -8.0×10^{-19} J and -8.9×10^{-19} J, which a change in energy of 0.9×10^{-19} J and wavelength of 2210 nm	Calculation of wavelength for transition to same level	1		
	and between -4.3×10^{-19} J and -8.0×10^{-19} J, which a change in energy of 3.7×10^{-19} J and wavelength of 537.6 nm	Answer			
	There are no lines at these wavelengths	Comment	1		

Q	Answers	Extra information	Mark	AO	Spec reference
3(a)	$\lambda_{max} T = 2.9 \times 10^{-3} \text{ mK}$			2	5.5.2
	$T = 2.9 \times 10^{-3} / (290 \times 10^{-9})$	Use of Wein's law	1		
	= 10 000 K	Answer and unit	1		
(b)	$d = 10^{-3}/1000 = 10^{-6} \text{ m}$	Calculation of <i>d</i>	1	2	5.5.2
	$n\lambda = d\sin\theta$, $n\Delta\lambda = d\sin\Delta\theta = d\Delta\theta$ for small angles				
	$n = 1, \ \Delta \lambda = d\Delta \theta = 10^{-6} \text{ m} \times 0.5 \times 10^{-3} = 5 \times 10^{-10} \text{ m}$	Answer	1		
(c)	One from		1	2	5.5.2
	The peak wavelength would be at approximately double/bigger than that of the curve for Sirius				
	Intensity of curve would be lower than Sirius				
(d)	Level 3 (5–6 marks) Calculations to determine the ratio of power using both Stefan's Law and the inverse-square Law	Indicative scientific points may include:	6	3`	5.5.2
		Description:			
	structured. The information presented is relevant and substantiated.	 Luminosity is linked to radius and temperature of the star 			
	Level 2 (3–4 marks) Partial calculations to determine the ratio of power using both Stefan's Law and the inverse-square Law	- As distance to Earth increases, intensity decreases			
	There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.	 Assuming no light is absorbed or scatter/star behaves like a black body 	ed		
	Level 1 (1–2 marks) Limited comparison not necessarily containing calculations which describes the factors associated with intensity.	Luminosity calculation:-use of			
	The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the	Stefan's Law to calculate luminosity of both stars (or use ratios)			
	evidence may not be clear.	$- L = 4\pi r^2 \sigma T^4$			
	0 marks No response or no response worthy of credit.	- luminosity of Sirius = 7.125 $\times 10^{27}$ W			

Q	Answers	Extra information	Mark	AO	Spec reference
		 luminosity of Arcturus = 7.39 × 10²⁸ W Acturus is 10.4× more luminous 			
		Intensity calculation: - Use of inverse-square law - $I \propto \frac{L}{d^2}$			
		 Comparing ratios, Arcturus decreases by 15.63× as much Therefore Sirius is 1.5× brighter on Earth overall than Arcturus 			
4(a)	Light second The Moon is about 1.4 light seconds/small number of light seconds/large number of metres from Earth/AU too big		1 1	1	5.5.3
(b)	The position of a distant star is observed relative to the background stars at one point of the Earth in its orbit, which is analogous to what the student first sees with one eye closed.		1	3	5.5.3
	The star is then observed 6 months later, which is analogous to what the student sees when the other eye is closed Parallax is the apparent movement of distant stars relative to the background, just as the thumb appears to move relative to the poster.		1		
(c)	p is the parallax angle in seconds of arc and d is the distance in parsecs The parsec is defined as the distance at which one astronomical unit subtends an angle of one second, so if p is measured in seconds of arc, d can be found in parsecs		1 1	1	5.5.3

Q	Answers	Extra information	Mark	AO	Spec reference
(d)	Angle = 0.04 seconds of arc, so $d = 1/p = 25$ parsecs	Distance in parsecs	1	3	5.5.3
	$= 7.74 \times 10^{17} \mathrm{m}$	Answer	1		
5(a)	$\frac{\Delta\lambda}{\lambda} = -\frac{v}{c}$	Substitution	1	2	5.5.3
	$v = \frac{c \times \Delta \lambda}{\lambda} = \frac{3 \times 10^8 \times (403.4 - 402.5) \times 10^{-9}}{402.5 \times 10^{-9}} = 670 \times 10^3 \text{ m/s}$ = 670 km/s	Answer	1		
(b)	$\frac{3000}{2500} + \frac{2500}{2000} + \frac{2000}{1500} + \frac{1}{1000} + \frac{1}{10$	Graph axes/labels – 1 mark Points plotted with straight line through (0,0) Allow gradients from 65 – 75 Gradient calculated	1	2	5.5.3
	distance/Mpc $v = H_0 d$	Use of age = $1/H_0$	1		
	Gradient is the Hubble constant = H_0 = 70.1 km/s/Mpc = 70.1 × 10 ³ m/s /10 ⁶ × 3.08×10 ¹⁶ m/Mpc = 2.28×10 ⁻¹⁸ s ⁻¹ age of the universe = 1/ H_0 = 1/2.28×10 ⁻¹⁸ s ⁻¹	Answer	1		

Q	Answers	Extra information	Mark	AO	Spec reference
	$= 4.39 \times 10^{17} \text{ s}$				
	= 14.2×10 ⁹ years				
(c)	 cosmological background radiation is radiation left over from the Big Bang with a peak in the microwave region 		1	1	5.5.3
(d)	Correct suggestion e.g.		1	3	5.5.3
	The resolution of measuring devices has improved so that the measurements of velocity and distance can be made with more precision				
	The radiation absorbed by detectors in the HST has not been scattered by the		1		
	atmosphere so there is less spread		1		
(e)	V = Hd			3	5.5.3
	H = 1/age of the universe	Use of H	1		
	$d = V \times age$ of the universe				
	$= 7.54 \times 13.8 \times 10^9 \times 3.1 \times 10^7 \text{ m}$				
	$= 3.22 \times 10^{18} \text{ m}$	Answer in m	1		
	$= 3.22 \times 10^{18} / 3.08 \times 10^{16} = 105 \text{ pc}$	Answer in pc/lg			
	Or		1		
	$= 3.22 \times 10^{18} / 9.46 \times 10^{15} = 341 \text{ ly}$				
6(a)	Isotropic	Both for mark	1	1	5.5.2
	Homogeneous				
(b)	$\lambda_{max} T = 2.9 \times 10^{-3} \text{ mK}$			2	5.5.2
	$\lambda_{max} = 2.9 \times 10^{-3} / T$	Substitution	1		
	$= 2.9 \times 10^{-3} / 2.7$				
	= 1.07×10 ⁻³ m	Answer	1		
(c)	Stars in the Milky Way can be moving towards our Solar System, and hence be blue-shifted (as well as red-shifted) due to gravity		1	1	5.5.3

Q	Answers	Extra information	Mark	AO	Spec reference
	The space between galaxies is expanding, so you only see red-shift of radiation from galaxies		1		
(d)	The wavelength will increase As the universe expands		1 1	1	5.5.3
(e)	$\frac{mv^2}{r} = \frac{GMm}{r^2}$ $M = \frac{rv^2}{G}$	Use of centripetal force and Newton's law Distance in metres	1	3	5.2.2 5.4.2
	$r = 2.6 \times 10^4 \times 3 \times 10^8 \times 365 \times 24 \times 3600 = 2.45 \times 10^{20} \text{ m}$ $T = 250 \times 10^6 \times 365 \times 24 \times 3600 = 7.88 \times 10^{15} \text{ s}$	Calculation of speed	1		
	$v = \frac{2\pi r}{T} = \frac{2\pi \times 2.45 \times 10^{20}}{7.88 \times 10^{15}} = 1.95 \times 10^{5} \mathrm{m/s}$	Calculation of mass	1		
	$M = \frac{2.45 \times 10^{20} \times (1.95 \times 10^{5})^{2}}{6.67 \times 10^{-11}} = 1.40 \times 10^{41} \text{kg}$ Only 5% of this is visible Visible mass = 0.05 × 1.40×10^{41} kg = 7.00×10^{39} kg.	Calculation of visible mass	1		
7(a)	From top: protostar, main sequence star Left:	Both correct, in order – 1 mark	1	1	5.5.1
	White dwarf Right:		1		
	Red supergiant, supernova, neutron star/black hole	All correct, in order – 1 mark	1		
(b)	A white dwarf / red giant It is 9 billion years older than we see it on Earth		1 1	1	5.5.1

Q	Answers	Extra information	Mark	AO	Spec reference
(c)	Both exert a pressure outwards		1	1	5.5.1
	Radiation pressure is due to photon momentum		1		
	Gas pressure is due to collisions of gas molecules		1		
	Gas pressure is much larger than radiation pressure		1		
(d)	$\frac{1}{2}mv^2 = \frac{Q_1Q_2}{4\pi\varepsilon_0 r}$	Conservation of energy	1	2	6.2.4
	Estimate $r = 0.5 \times 10^{-15}$ m	Estimation of <i>r</i> . Allow values between 0.5 and 3 fm	1		
	200 $2 \times 1.60 \times 10^{-19} \times 1.60 \times 10^{-19}$	Substitution	1		
	$v = \sqrt{\frac{2Q_1Q_2}{4\pi\varepsilon_0 rm}} = \sqrt{\frac{2 \times 1.60 \times 10^{-19} \times 1.60 \times 10^{-19}}{4\pi\varepsilon_0 \times 0.5 \times 10^{-15} \times 1.673 \times 10^{-27}}}$ = 2.3×10 ⁷ m/s	Answer	1		
(e)	$\frac{1}{2}mv^2 = \frac{3}{2}kT$	Use of equation	1	3	5.1.4
	$v = \sqrt{\frac{3kT}{m}}$	Substitutions	1		
	For centre of star: $v = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 15 \times 10^{9}}{1.673 \times 10^{-27}}}$				
	\sqrt{m} $\sqrt{1.673 \times 10^{-27}}$ = 1.9 × 10 ⁷ m/s	Answers (both)	1		
	For surface of star				
	$v = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 15 \times 10^{9}}{1.673 \times 10^{-27}}}$	Answer	1		
	$V = 1.673 \times 10^{-27}$ = 1.2×10 ⁴ m/s	Reason	1		

Q	Answers	Extra information	Mark	AO	Spec reference
	Fusion happens in the centre of stars The speed calculated is the rms speed, there will be a distribution of speeds and some protons will have sufficient energy to fuse				
(f)	A (electron) neutrino To conserve lepton number		1 1	2	6.4.2
8(a)	Initially the p.d. across the $LDR = 6.0 - 3.4 \vee = 2.6 \vee$ Finally the p.d. across the $LDR = 6.0 \vee - 3.7 \vee = 2.3 \vee$	Use of p.d.s across <i>LDR</i>	1	3	4.2.3
	Initial current = V/R = 3.4 $V/10 \times 10^3$ = 3.4×10 ⁻⁴ A Initial resistance of LDR = V/I = 2.6/3.4×10 ⁻⁴ = 7647 Ω	Calculation of current	1		
	Final current = V/R = 3.7 $V/10 \times 10^3$ = 3.7×10 ⁻⁴ A	Resistances calculated	1		
	Final resistance of $LDR = V/I = 2.3/3.7 \times 10^{-4} = 6216 \Omega$ Percentage change = ((7647-6216)/7647) × 100 = 19% (18.7)	Percentage calculated	1		
	Or use the potential divider equation to determine: $R1 = 7647 \Omega$ when Vout = 3.4 V				
	$R1 = 6216 \Omega$ when Vout = 3.7 V				
(b)	The change in resistance is limited by the resolution of the voltmeter, which limits the change in resistance that can be detected Minimum change in p.d. is 0.1 V Area of 1 cm^2 produced a change of 0.3 V, so minimum area = $1/3 \text{ cm}^2 = 0.33$	Mention of resolution	1	3	4.2.3
	cm ² .		1		
	So minimum diameter = 6.5 mm	Use of ratios			
		Answer	1		
		Calculation of diameter	1		
(c)	The star emits all wavelengths of light The light travels through the atmosphere, and particular wavelengths are		1	3	5.5.2

Q	Answers	Extra information	Mark	AO	Spec reference
	absorbed depending on the elements present, so that an absorption spectrum is observed		1		
	By comparing the spectrum with the (emission) spectrum of elements on Earth the elements can be identified		1		
(d)	Escape velocity does not depend on mass as $\frac{1}{2}mv^2 = \frac{GmM}{r}$	Independence of escape velocity on mass	1	3	5.1.4 5.4.4
	The mean square speed of the gas molecules in the atmosphere is	Inverse relation of v_{rms} and speed	1		
	proportional to the temperature of the gas, so $\frac{1}{2}mv^2 = \frac{3}{2}kT$ but is inversely	Effect on composition	1		
	proportional to mass		•		
	The oxygen and carbon molecules do not have sufficient speed to escape.				