

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	A 1 kg mass experiences a force of 3.7 N		1	5.4.1
				AO1
(b)	$\rho = M/V V = 4/3 \ \pi r^3$	simple statement radius is less 1	1	3.2.4
	GM GrV 4Grpr ³ 4Grpr	mark only	1	5.4.2
	$g = g = \frac{1}{r^2} = \frac{3r}{r^2} = \frac{1}{3r^2} = \frac{1}{3r^2} = \frac{1}{3}$		1	AO2
	If density constant then $g \propto r$			
	If <i>g</i> less then <i>r</i> must be less			
(c)	Area under the existing curve shaded in		1	5.4.4
	This represents the work done bringing a 1 kg mass from infinity to that point		1	AO1
(d)	Either by estimating area under curve:			5.4.4
	220 squares ± 5		1	AO2
	Each square = 0.1 × 0.4×10 ⁶ J kg ⁻¹		1	
	$V_{\rm g}$ = 220 × 0.1 × 0.4×10 ⁶ J kg ⁻¹			
	$= 8.8 \times 10^6 \text{ J kg}^{-1}$			
	OR			
	use of surface data to gain <i>GM</i>			
	$g = GM/r^2$ and $gr^2 = GM$			
	$V_{\rm g} = GM/r = gr^2/r = gr = 3.7 \times 2.4 \times 10^6 = 8.9 \times 10^6 ({\rm J kg^{-1}})$			
(e)	$GMm/r = \frac{1}{2}mv^2$	All values of $V_{\rm g}$ yield 4200 m s ⁻¹ to	1	5.4.4
	$2GM/r = v^2$	2sf	1	AO2
	$v^2 = 2 \times (9 \times 10^6)$			
	$v = 4200 \text{ m s}^{-1}$			
2(a)	$g = GM/r^2$ $V_{\rm g} = GM/r$		1	5.4.2
	$V_{\rm g} = (GM/R^2)R = gR$			5.4.4
				AO1

Question	Answers	Extra information	Mark	AO Spec reference
(b)	$GMm/r = \frac{1}{2} mv^2$ $GM/r = \frac{1}{2} v^2$ $gR = \frac{1}{2} v^2$		1	5.4.4 AO2
	$v = \sqrt{2gR}$			
(c)	$v = \sqrt{2gR}$ $v = \sqrt{2 \times 9.81 \times 6.37 \times 10^6} = 11\ 000\ \text{m}\ \text{s}^{-1}\ (11\ 200)$		1	5.4.4 AO1
(d)	Mass of hydrogen = $(2 \times 0.002)/6.02 \times 10^{23} = 6.645 \times 10^{-27}$ kg $\frac{1}{2} m (c_{\rm rms})^2 = 3/2 kT$ $(m/3k) (c_{\rm rms})^2 = T$		1	5.1.4 AO3
	$T = (6.645 \times 10^{-27} \text{ kg/3} \times 1.38 \times 10^{-23}) \times 11\ 000^2$ T = 20137 K		1 1	
(e)	Value used in 2(d) uses the mean speed of the molecules. At 650 K there will be a range of molecular speeds and some will have enough speed to escape the atmosphere.		1 1	5.1.4 AO3
3(a)	Gravitational potential $V_{\rm g}$ at a point is defined as the work done/energy required to bring <u>1 kg/unit</u> mass from infinity to that point in space.		1	5.4.4 AO1
(b)	If $V \propto 1/r$ Then Vr should equal a constant Take pairs of data, at least 2, and see if this is correct.	Allow plot a graph of V vs $1/r$ graph should be a straight line through the origin	1 1	5.4.4 AO2
(c)	Tangent drawn at 14×10^6 m Gradient calculated e.g. $58 \times 10^6/27 \times 10^6$ $g = 2.1 \pm 0.2$ Or		1 1	5.4.2 5.4.4 AO2

Question	Answers	Extra information	Mark	AO Spec reference
	Use of $g = GM/r^2 = V_g/r$			
	$g = 30 \times 10^{6}/14 \times 10^{6} \text{ m}$			
	$g = 2.1 \pm 0.2$			
(d)	Graph rising as it moves towards the Moon and then decreasing closer to the Moon.		1	5.4.4 AO3
	Starts at −63 at Earth's surface, ends at a value smaller at Moon's surface. Does not go to zero		1	
			1	
4(a)	The potential difference between the lines is constant but the distance is not /		1	5.4.1
	lines are not equally spaced			AO2
(b)	Lines drawn towards the centre of the Earth perpendicular to surface (by eye)	Should stop at the surface	1	5.4.1
	Arrow pointing to the centre			AO1
			1	
(c)	$V_{\rm g}$ = GM/r and g = GM/r^2 so GM = 9.81 × r^2		1	5.4.2
	$r = GM/V_{\rm g}$			5.4.4
	$r = 9.81 \times (6.37 \times 10^6)^2 / 4.0 \times 10^7 = 1 \times 10^7 \text{ m} (9.95 \times 10^6)$		1	AO2
(d)	Since $V_{g} = GM/r$ and the mass of the Earth is constant and the height of orbit		1	5.4.4
	is constant, the gravitational potential remains the same.		1	AO1
5(a)	Arrow down labelled $W = mg$		1	3.2.1
	Arrow along string labelled tension (pointing away from bob)		1	AO1
	Arrow to the left labelled Force/gravitational force of attraction			
			1	
(b)	The force of attraction between two masses is proportional to the product of	Allow equation but terms must be	1	5.4.2
	the masses and inversely proportional to the distance between them squared.			AO1
(c)	$T \cos \theta = \text{mg} = GmM_{\text{E}}/R^2 \text{ or } T \sin \theta = GMm/d^2$		1	2.3.1
			1	AO2

Question	Answers	Extra information	Mark	AO Spec reference
	Divide one equation by the other (or substitute for <i>T</i>) $T \sin \theta/T \cos \theta = GMm/d^2 \div GmM_E/R^2$ $\tan \theta = MR^2/M_Ed^2$		1	
(d)	% difference = (actual – measured)/actual = ((5510 – 4560)/5510) × 100% = 17%		1	2.2.1 AO2
6(a)	A line segment joining a planet and the Sun sweeps out equal areas in equal intervals of time.		1	5.4.3 AO1
(b)	$F = GMm/r^2$ and $F = mv^2/r$ or $g = GM/r^2$ and $a = v^2/r$ $GMm/r^2 = mv^2/r$		1	5.4.3 AO1
	$GM/r = v^2$ $v = 2\pi r/T$		1	
	$GM/r = 4 \pi^2 r^2 / T^2$ $T^2 = 4 \pi^2 r^3 / GM$ Since others constant $T^2 \propto r^3$		1	
(c)	Appropriate test proposed T^2/r^3 = constant Data tested at least three times e.g. $(1.769)^2/(422)^3 = 4.2 \times 10^{-8}$ Relationship holds for the moons		1 1 1	5.4.3 AO2
(d)	$T^2 / r^3 = 4 \pi^2 / GM$ use of constant in appropriate units or pair of data from the table $T^2 / r^3 = 3.1 \times 10^{-16}$		1	5.4.3 AO3
(e)	$M = 4 \pi^{2}/G \times 3.1 \times 10^{-10} = 1.9 \times 10^{27} \text{ kg}$ $T^{2} \propto r^{3}$ $2 \log T \propto 3 \log r$		1	1.1.3 AO3

Question	Answers	Extra information	Mark	AO Spec reference
	$\log T \propto \frac{3}{2} \log r$		1	
	straight line graph with gradient = 3/2			
7(a)	Arrow pointing towards centre of Earth (judged by eye)		1	5.4.1 AO1
(b)	To remain in orbit there must be a force perpendicular to direction of motion This satellite could not maintain this orbit without an engine.		1 1	5.2.2 AO2
(c)	Use of $r = (3.6 \times 10^7 + 6.37 \times 10^6) [3.6 \times 10^7 = 36 \times 10^6]$ $GMm/r^2 = mv^2/r$ $GM/r = v^2$ $GM = 9.81 \times r^2$ $v = \sqrt{\frac{GM}{r}}$ $v = \sqrt{\frac{9.81 \times (6.37 \times 10^6)^2}{36 \times 10^6 + 6.37 \times 10^6}}$ $v = 3100 \text{ m s}^{-1} \text{ or } 3.1 \text{ km s}^{-1}$ OR use of $v = 2\pi r/T$ where $T = 24 \times 60 \times 60$		1 1 1	5.4.4 AO2
(d)	Use of E = KE + GPE KE = $\frac{1}{2}mv^2$ = 1.355×10 ⁹ J GPE = $-GMm/r$ = $-(6.67 \times 10^{-11} \times 6 \times 10^{24} \times 282)/(3.6 \times 10^7 + 6.37 \times 10^6)$ = $- 2.664 \times 10^9$ J E = -1.31×10^9 J	Students may also have combined equations to yield the same answer Do not award final mark if minus sign not included.	1 1 1	5.4.4 AO2

Question	Answers	Extra information	Mark	AO Spec reference
8(a)	Arrow drawn pointing to centre of the space station		1	5.2.2
				AO1
(b)	$a = \omega^2 r$		1	5.2.1
	$9.81/25 = \omega^2$			5.2.2
	$\omega = 0.63 \text{ rad s}^{-1}$			5.2.1
	$\omega = 2\pi/T$		1	AO2
	$T = 2\pi/\omega = 10 \text{ s}$			
(c)	Suggested height is –1.8 m (allow between 1.5 m and 2.0 m)		1	2.1.1
	r = 25 - 1.8 = 23.2 m			AO3
	$a = \omega^2 r$			
	$a = 0.63^2 \times 23.2 = 9.2 \text{ m s}^{-2}$		1	
(d)	Larger radius the height of astronaut is a smaller fraction of the radius – so		1	2.2.1
	difference over body marginal (wtte)			AO3
	Difficulty/expense of taking such large amounts of material into space		1	