

Question	Answers	Extra information	Mark	AO	Spec reference
1 (a) (i)	Period = 4.8 s/3 = 1.6 s	Evidence of use of graph to find T	1	2	5.3.1
	f = 1/T = 1/1.6 s = 0.625 = 0.63 Hz	Frequency	1		
(ii)	Maximum velocity = $\omega A = 2\pi f A$	Evidence of use of frequency	1	1	5.3.1
	$= 2 \times \pi \times 0.63 \times 0.02$			2	
	= 0.0786 m s ⁻¹ = 0.079 m s ⁻¹		1		
(b)	Find the maximum gradient / gradient at $x = 0$		1	1	5.3.1
(c)	Sinusoidal/same number of waves / frequency / periodic time		1	2	5.3.1
	Inverted / a negative cosine graph		1		
	Maximum acceleration = $\omega^2 A = (2\pi f)^2 A / = 0.308 \text{ m s}^{-2} = 0.31 \text{ m s}^{-2}$		1		
(d)	Condition for SHM is that $a \propto -x$		1	1	5.3.1
	So the graph of <i>a</i> is the same shape as that of <i>x</i> , but inverted				
2 (a) (i)	Strategy: States that readings of T (as the dependent variable) will be measured for different values of independent variable, wire diameter, d .	Identifies dependent, independent and 2 control variables	1	1	5.3.1
	Clearly identifies at least 2 correct control variables, e.g. length/number of coils on spring, mass				
	Make springs using wire of different diameters and measure the time period	Change <i>d</i> , measure <i>T</i>	1		
	Repeat measurements, omit outliers, find mean	Repeat, take mean	1		
		How to deal with outliers	•		
			1		
(ii)	Measure the time for 10 oscillations and divide the time by 10	Allow other multiples of T	1	1	5.3.1

Question	Answers	Extra information	Mark	AO	Spec reference
(b)	Plausible reason e.g. the length of wire is the same so the volume/mass of the wire will vary with the area of the wire, which is proportional to d^2 .		1	3	5.3.1
(c)	Use the time period and mass to find the <i>k</i> : $T = 2\pi \sqrt{\frac{m}{k}}$ $k = \left(\frac{2\pi}{T}\right)^2 m$ Plot a graph of <i>k</i> (<i>y</i> -axis) against <i>d</i> ² (<i>x</i> -axis), and if it is a straight line through the origin then the byoothesis is correct.	Evidence of use of equation to find k Correct axes identified Allow graph of T^{-2} vs. d^2	1 1	2	
3 (a)	T = $2\pi \sqrt{\frac{m}{k}}$ Plot a graph of <i>T</i> against $\sqrt{\frac{l}{k}}$: the gradient = $2\pi \sqrt{m}$ Or Plot T^2 against 1/ <i>k</i> : gradient = $4\pi^2 m$ You need to collect values of time period and spring constant. Change <i>k</i> , measure time period, use at least 6 different springs Displace the trolley and measure the time for many oscillations with a stop clock, e.g. 5 and divide by 5 to find each time period Repeat measurements and find the average time period for each value of <i>k</i> .	Correctly identifies variables to plot, and how gradient relates to mass Indication of range of independent variable Accurate measurement of time Repeat measurements	1 1 1 1	1	5.3.1
(b)	Use the full reading on the stopwatch (to hundredths of a second) in measurements and calculation of the mean. Round up to one decimal place, and use uncertainty in using the	Use of full display on stopwatch until the calculation of final value.	1	1	5.3.1

Question	Answers	Extra information	Mark	AO	Spec reference
	stopwatch = ± 0.2 s due to reaction time for both starting and stopping the stopwatch	Estimation of reaction time	1		
	Giving a total uncertainty of ±0.4 s	Total uncertainty is double the reaction time	1		
(c)	Suitable method:			1	5.3.1
	Set up the light gate so that it is horizontal, and triggered by the mass when it goes through its equilibrium position.	Suitable practical arrangement	1		
	Attach a straw/light rod to the mass that breaks the beam as the mass				
	The measurement of T will be double the time measured by the light gate	Measurement of T that is accurate for the arrangement.			
			1		
(d)	Each spring produces a restoring force of $-kx$, so the total restoring force = $-2kx$	Analysis to produce double the restoring force	1	2	5.3.1
	ma = -2kx compared to $ma = -kx$				
	so $\omega^2 = \frac{2k}{2}$, ω increases by $\sqrt{2}$	Use of $a = \omega^2 x$	1		
	m	Answer	1		
	$T = \frac{2\pi}{\omega}$ so T is reduced by $\sqrt{2}$				
4 (a) (i)	For each length:			1	5.3.1
	Allow the pendulum to swing 3 times (or more)		1		
	Take the times recorded by the light gate and double them to find the		1		
	Find the mean of all of the measurements.		1		
(ii)	u ovia length u ovia T^2	Roth labels needed	1	2	521
(11)	<i>x</i> -axis length, <i>y</i> -axis T Line of best fit through (0, 0),		I	2	5.5.1

Question	Answers	Extra information	Mark	AO	Spec reference
	4.5 4.5 4.5 4.5 3.5 3.5 2.5	Allow 3.9–4.1 Evidence of manipulation of equation Allow 9.62–10.1	1 1 1		
(iii)	Bigger – small angle approximation does not hold, bob may fall rather	Do not allow effect on g without	1	1	5.3.1

Question	Answers	Extra information	Mark	AO	Spec reference
	than swing, time period will be shorter than it should,	explanation			
	g will be smaller than it should $g = \frac{1}{2} \frac{1}{2}$		4		
	Smaller – amplitude does not affect time period,		I		
(b)	Systematic error in measurement of length		1	1	5.3.1
5 (a) (i)	The angle through which the pendulum is displaced should be small so that you can use the small angle approximation		1	1	5.3.1
	So that $T = 2\pi \sqrt{\frac{l}{g}}$, which is independent of mass		1		
(ii)	$x = A \cos \omega t$	Calculation of angular velocity	1	2	5.3.1
	$A = 4.3 \times 10^{-2} \text{ m}, \ \omega = \frac{2\pi}{T} = \frac{2\pi}{1.8} = 3.5 \text{ rad s}^{-1}$ $x = 4.3 \times 10^{-2} \cos(3.5 t)$	Equation	1		
(b) (i)	Maximum velocity = $\omega 4 = 3.5 \times 4.310^{-2} = 0.15 \text{ m s}^{-1}$			2	5.3.2
	$\frac{1}{1} = \frac{1}{1}$	Calculation of maximum kinetic energy	1		
	Maximum kinetic energy = $\frac{1}{2}mv^2 = \frac{1}{2}0.26(0.15)^2 = 2.9 \times 10^{-3}$ J		4		
	Graph that is correct shape $(y = 1 - x^2)$		1		
	Maximum labelled, x-axis from -3 cm to $+3$ cm		1		

Question	Answers	Extra information	Mark	AO	Spec reference
	energy total energy -A 0 +A displacement x				
(ii)	Assuming the total energy is constant,	Assumption	1	1	5.3.2
	Total energy = $\frac{1}{2}kA^2$ So p.e = total energy – k.e. = $\frac{1}{2}kA^2 - \frac{1}{2}mv^2$	description	1		
(c)	The mass decreases, so kinetic energy decreases The line will not be symmetrical / the line will reach a lower value		1	2	5.3.2
6 (a)	Bathroom scales are compressed when you stand on them by an amount that is proportional to your weight/mass. In the ISS, both the scales and the astronaut are in free fall so the scales will not be compressed.		1 1	2	3.2.1 5.2.2
(b) (i)	The acceleration is proportional to the displacement, and in the opposite direction.		1	1	5.3.1
(ii)	$T = 2\pi \sqrt{\frac{m}{k}}$			2	5.3.1

Question	Answers	Extra information	Mark	AO	Spec reference
	$k = m \left(\frac{2\pi}{T}\right)^2$		1		
	$= 72.65 \ kg \left(\frac{2\pi}{2.103}\right)^2$		1		
	= 648.5 N m ⁻¹				
(iii)	0.9 × 72.65 kg = 65.39 kg	Allow ecf from b) ii)	1	2	5.3.1
	T = 0 61.76 kg				
	$I = 2\pi \sqrt{\frac{1}{648.5 \text{ N m}^{-1}}}$				
			1		
	= 1.995 s = 2.0 s		1		
	T is proportional to \sqrt{m} so as mass decreases so does periodic time		-		
(iv)	Max displacement = amplitude which is proportion to energy		1	3	5.3.1
	Energy transferred to thermal store due to friction		1		
(v)	No		1	1	5.3.1
	The mass depends on the time period, which is independent of amplitude		1		
(c) (i)	The normal force between the outer edge of the station and the astronaut would 'simulate' gravity		2	3	5.2.2
	The normal force provides the centripetal force to keep the astronaut moving in a circle				
(ii)	$g = v^2/r = 9.81 \text{ m s}^{-2}$	Use of g to find v	1	3	5.2.2
	$v = \sqrt{9.81 \times 20}$				
	$= 14.0 \text{ m s}^{-1}$	Or allow finding omega = 0.7 rad s ⁻¹	1		

Question	Answers	Extra information	Mark	AO	Spec reference
	$v = \frac{2\pi r}{T} = 2\pi r f$ $f = \frac{v}{2\pi} = \frac{14}{40\pi} = 0.11 \text{ Hz}$ Revolutions per minute (rpm) = 0.11 × 60 = 6.7 rpm	Correct value of f Correct rpm	1		
7 (a) (i)	The acceleration is proportional to the displacement, and in the opposite direction/so as to restore the object to its equilibrium position		1	1	5.3.1
(ii)	Volume of water displaced = $A x = 0.62 \text{ cm}^2 \times 1.5 \text{ cm} = 0.93 \text{ cm}^3$ Mass of water = density of water × volume = 0.93 cm ³ × 1 g cm ⁻³ = 0.93 g = 9.3×10 ⁻⁴ kg Weight = $mg = 9.3 \times 10^{-4} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 9.12 \times 10^{-3} \text{ N}$	Correct use of equations for density and weight	1 1	2	3.2.4 3.2.1
(iii)	The restoring force is proportional the distance that the tube is displaced from its equilibrium position: $F = -Ag\rho . x$	Explanation of $F \propto x$	1	3	5.3.1
(iv)	Acceleration = F/m = 9.1 × 10 ⁻³ N/16 × 10 ⁻³ kg a_{max} = 0.57 m s ⁻² $a_{max} = \omega^2 A$ $= (2\pi f)^2 A$ $f = \sqrt{\frac{a_{max}}{A(2\pi)^2}}$	Calculation of acceleration Use of $a_{max} = \omega^2 A$ Alternatively, use $a_{max} = \omega^2 A$ to find ω , then use $T = 2\pi/\omega$ Answer	1	3	5.3.1

Question	Answers	Extra information	Mark	AO	Spec reference
	$f = \sqrt{\frac{0.57 \text{ ms}^{-1}}{0.015 \text{ m}(2\pi)^2}}$				
	f = 0.98(1) Hz T = 1/f = 1/0.98 Hz = 1.02 s				
(b) (i)	Restoring force $F = -Ag\rho x$ $a = -\frac{\text{Area} \times g \times \text{density}}{2} \cdot x$	Derivation of value of ω^2	1	3	5.3.1
	mass of tube $\omega^{2} = \frac{\text{Area} \times g \times \text{density}}{\text{mass of tube}} = (2\pi f)^{2} = \frac{(2\pi)^{2}}{T^{2}}$	Manipulation to show time period Answer	1 1		
	density $\propto \frac{1}{T^2}$				
	A plot of density vs 1/period ² is a straight line				
(ii)	A series circuit with an LDR and a fixed resistor A cell/ battery and a voltmeter across either the LDR or resistor		1 1	1	4.3.1
8 (a) (i)	$k = F/x = 750 \text{ N/2.5} \times 10^{-2} \text{ mm} = 30 000 \text{ N m}^{-1}$		1	2	3.4.1
(ii)	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{30\ 000}{1200}} = 0.080\ \text{Hz} \ (0.796)$		1	2	5.3.1
	T = 1/f = 1/0.70 = 1.2(6) s.		I		
(iii)	If the car goes over a bump/speed bump it will displace the car from its equilibrium position		1	3	5.3.3
(iv)	$T = 2\pi \sqrt{\frac{m}{r}}$	Appropriate plot Gradient that matches plot.	1	2	5.3.1
	V K		1		

Question	Answers	Extra information	Mark	AO	Spec reference
	Either: plot T^2 vs <i>m</i> , gradient = $\frac{4\pi^2}{k}$				
	Or: plot T vs \sqrt{m} , gradient = $2\pi \sqrt{\frac{l}{k}}$				
(b)	The oscillations are heavily/critically damped		1	2	5.3.3
(c) (i)	The engine vibration causes the door to vibrate and reflected vibrations set up standing waves in the door with nodes/ antinodes Where there are nodes there is little/no deformation, where there are		1	3	4.4.4
	antinodes there is maximum deformation		1		
(ii)	The distance between the nodes is half a wavelength $1 = 2 \times 0.22$ m = 0.44 m	Calculation of wavelength	1	2	4.4.4
	$\lambda = 2 \times 0.22 \text{ m} = 0.44 \text{ m}$ $v = f\lambda = 11\ 300 \times 0.44 = 5000(4972) \text{ m s}^{-1}$	Answer to 2 significant figures	1		