

Question	Answers	Extra information	Mark	AO	Spec reference
1 (a)	 Any two from: 1. A gas consists of molecules of negligible volume. 2. The molecules collide elastically with each other and the container, thus gaining or losing no energy. 3. There are negligible forces of attraction between the molecules. 4. The duration of an impact is much less than the time between impacts. 		1	1	5.1.4
(b) (i)	$pV = nRT$, $p_1V_1 = p_2V_2$ $V_2 = p_1V_1/p_2$ = 101 000 × 3.51/2.1×10 ⁶ = 0.131 m ³ = 0.13 m ³ Assuming there is no change to the temperature or number of mols of gas	Use of ideal gas equation by finding <i>nRT</i> or ratios answer	1 1	2	5.1.4
(ii)	Example: The molecules do not have negligible volume, they have a finite volume. The actual volume is less than that given, so the pressure will be higher.	Suggestion linked to kinetic theory/ideal gas assumptions Correct reasoning/effect on pressure	1	1	5.1.4
(iii)	<i>T</i> (K) = <i>T</i> (°C) + 273 = 293 K	Temperature in K	1		5.1.1
(iv)	Number of mols = pV/RT 101 000 × 4.83/(8.31 × 293) = 200.4 mols Mass of gas = 200.4 × 6.02×10 ²³ × 7.32×10 ⁻²⁶ = 8.83 kg $F = mL$, $L = E/m = 1.31 \times 10^{6}/8$ 83 = 148 kJ kg ⁻¹	Number of mols Mass of gas answer	1	3	5.1.3
2 (a)	$E \text{ water} = mc\Delta\theta = 1.62 \times 4200 \times (100 - 20) = 544\ 320\ \text{J}, = 5.4 \times 10^5\ \text{J}$ = 540 kJ $E \text{ pan} = mc\Delta\theta = 0.75 \times 385 \times (100 - 20) = 23\ 408\ \text{J}, = 2.3 \times 10^4\ \text{J} = 23\ \text{kJ}$	Calculations of energy	1 1	2	5.1.3

Question	Answers	Extra information	Mark	AO	Spec reference
	Total energy = 5.67×10^5 J Power = energy/time = 5.67×10^5 J/10 × 60 = 946 W \approx 950 W	Answer including assumption	1		
(b)	Assuming room temperature is 20° C Assuming the energy is transferred so that the water and potatoes are at the same temperature, and no energy is transferred to the surroundings Energy transferred from water = $1.62 \times 4200 \times 14 = 95256$ J Assuming the potatoes are heated to the same temperature as the water 95256 = mass × 3390 (86 – 20) Mass = 0.43 kg.	Assumptions that potatoes at the same temperature Answer	1	2	5.1.3
(c)	Internal energy is the sum of the randomly distributed kinetic energies and potential energies of the particles in a body The water will start to evaporate, so energy will be used to break the bonds/increase the potential energy of the particles without changing their speed/increasing the kinetic energy of the particles.	Description/definition of internal energy Effect of evaporation on time	1	2	5.1.3
(d)	Assume temperature difference is the same = 80 °C Power = energy per second = mass per second × $c \times \Delta \theta$ mass per second = $P/c \times \Delta \theta$ = 946/4200 × 80 = 2.82×10 ⁻³ kg s ⁻¹ . Time to fill the pan with 1.62 kg of water = 1.62/2.82×10 ⁻³ = 575 s = 5 mins 35 s. This is a long time, so not appropriate for filling pans, better for filling cups/ original power calculation involved heating the pan so this time would be shorter as power would be greater.	Calculation of mass per second Allow use of 950 W and 544 320 J from (a) Answer Suitable comment	1	3	5.1.3
3 (a)	The temperature at which the internal energy/pressure is zero		1	1	5.1.2
(b)	Temperature, volume, number of mols (molecules)/mass of gas	Do not accept 'amount of gas' Do not accept ideal gas equation without names of quantities	1		5.1.4

Question				Answers	Extra information	Mark	AO	Spec reference
(c) (i)	To find rela	tionship be	etween tem	perature and pressure you need the volume	Using the data for 10 cm ³	1		5.1.4
	Thoro is the	anı o groatost	number of a	data points for 10 cm^3				
		e greatest			Reason given	1		
	<i>T</i> (C)	Т (К)	<i>p</i> (kPa)					
	273	0	400					
	313	40	459					
	353	80	517					
	393	120	576					
	413	160	605					
	pressure / kPa	700 600 500 400 300 200 100 0 0 500) 100 15	50 200 250 300 350 400 450 temperature /K	Appropriate graph of <i>P</i> vs. <i>T</i> , with appropriate axes Points plotted, line of best fit	1		
(ii)	pV = nRT.	so gradien	t = nR/V	and Antonio Contraction and Antonio Contractiona	Correctly identifying gradient = nR/V	1		5.1.4

Question	Answers	Extra information	Mark	AO	Spec reference
	Gradient = $(600 - 400) \times 1000/(413 - 273) = 1429$ nR/V = 1429 $n = 1420 \times 10 \times 10^{-6}/8$ 21	Allow range of gradients from 1350 – 1500	1		
	 a = 1429 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	Use of gradient to find number of mols Comment about prediction justified by graph	1		
(d)	If the density doubles the number of particles in a given volume doubles The number of collisions would double, as would the force, and hence pressure	Justification based on ratios/proportion	1		5.1.4
	However, if the density is very high the gas may not behave like an ideal gas because the particles are too close together/take up too much volume/interact.	With appropriate qualification	1		
4 (a)	 Sample method: Measure the diameter of the plunger of a plastic syringe, and calculate the cross-sectional area. 	Measurements to find force, area, volume	4		5.1.4
	 Draw in 4.0 cm³ of air into the syringe and clamp it in a stand. Attach 100 g to the plunger, making sure the plunger can move downwards freely. Record the volume of gas in the syringe by estimating fractions of a division. 	Calculation of pressure Repetition, finding mean,			
	• Repeat the procedure with an extra two 100 g masses added to the holder each time, up to a total mass of 1000 g.	Subtraction of atmospheric pressure			
	 The whole experiment should then be repeated to obtain a second set of results, and the mean volumes found. The force exerted by the masses can be calculated using <i>F</i> = <i>mg</i> 				
	 where <i>m</i> is the mass in kg and <i>g</i>, the gravitational field strength, is 9.81 N kg⁻¹. The pressure exerted by this force on the air sample is then <i>F</i>/<i>A</i> in Pascals (Pa). Convert this into kPa. 				

Question	Answers	Extra information	Mark	AO	Spec reference
	This should be subtracted from standard atmospheric pressure, 101 kPa, to obtain the pressure of the air sample, <i>P</i> . (Note: the initial volume of the air with no masses hung on the loop will be at standard atmospheric pressure.)				
(b) (i)	If the pressure is inversely proportional to volume then a graph of $1/p$ against V will be a straight line through (0,0)		1		5.1.4
	Missing value is $1/(90 \times 10^3) = 11.1 \times 10^{-6}$.		1		
(ii)	$volume/\times 10^{-6} m^{3.0}$				5.1.4
	Point plotted, correct labels on axes, two lines showing a range of gradients Upper graph: Gradient = $30 - 0 / 20.1 - 0 = 1.49 (\times 10^{-6} \text{ m}^3/\times 10^{-3} \text{ kPa}^{-1}) = 1.49 \times 10^{-6} \text{ m}^3 \text{ kPa}^{-1}$	Graph finished correctly	1		
	Lower graph: Gradient = 30 – 0 / 24.0 – 0 = 1.25 (×10 ⁻⁶ m³/×10 ⁻³ kPa ⁻¹) = 1.25×10 ⁻⁶ m³ kPa ⁻¹	Two gradients calculated	1		
	pV = nRT, so graph of V vs 1/p has a gradient of nRT , where $T = 273 + 21.0 = 294 K$	Calculation of number of mole for			
	Upper graph: number of mols = gradient/ RT = 1.49×10 ⁻⁶ / (8.31 × 294) = 6.10×10 ⁻⁴	each gradient, and mean			
	Lower graph: number of mols = gradient/ RT = 1.25×10 ⁻⁶ / (8.31 × 294) =		1		

Question	Answers	Extra information	Mark	AO	Spec reference
	5.12×10 ⁻⁴	Answer with uncertainties			
	Average number = $(6.10 \times 10^{-4} + 5.12 \times 10^{-4})/2 = 5.61 \times 10^{-4}$				
	Number with uncertainty = $(5.61 \pm 0.51) \times 10^{-4}$		1		
(iii)	Error bars are appropriate for volume measurement as the uncertainty in reading the volume using the scale on the syringe is going to be the same each time	Comment that bars for V should be the same, but for $1/p$ will be different	1		5.1.4
	uncertainty in the pressure depends on the uncertainties in the measurement of the diameter, which is the same for each, but also in the uncertainty in the masses, which is different.		1		
5 (a) (i)	Level 3 (5–6 marks) Multiple comparisons for both similarities and differences	Indicative scientific points may include:	6	3	5.1.2
Le wi Co mo	 The student presents relevant information coherently, employing structure, style and SP&G to render meaning clear. Level 2 (3–4 marks) Comparisons of both similarities and differences but with some misunderstanding or limited comparisons. The student presents relevant information and in a way which assists the communication of meaning. SP&G are sufficiently accurate not to obscure meaning. 	 Similarities in methods: Electric heater used to heat a known mass of liquid Insulated container for liquid pd., current and time measured 			
	 Level 1 (1–2 marks) Limited comparison between the 2 methods with only similarities or differences described The student presents some relevant information in a simple form. SP&G allow meaning to be derived although errors are sometimes obstructive. 0 marks No response or no response worthy of credit. 	 Differences in methods: SHC container has a lid, but for SLH does not Temperature change is measured for SHC, change in mass is measured for SLH Equations quoted for both 			
(ii)	In the SHC experiment the average speed of the molecules increases, so the internal energy increases because of an increase of kinetic energy of the		1	2	5.1.2

Question	Answers	Extra information	Mark	AO	Spec reference
	molecules In the SLH the internal energy increases because the potential energy of the molecules increases.		1		
(b) (i)	Bright dots of light, which are smoke particles, moving randomly in Brownian motion Because they are being bombarded by gas molecules of the air.	Description separate from explanation	1	1	5.1.2
(ii)	They would see bright spots that would move less/vibrate Water molecules are touching/not moving around.		1 1	3	5.1.2
6 (a) (i)	Change in momentum = $(mv_1) - (-mv_2) = 4.6 \times 10^{-26} (510 - (-510)) = 4.69 \times 10^{-23} \text{ kg m s}^{-1}$ Time between collisions = $d/v = 0.3/510 = 5.9 (5.88) \times 10^{-4} \text{ s}$	Answer Answer	1	2	3.5.1
(ii)	Force = rate of change of momentum = $4.69 \times 10^{-23}/5.88 \times 10^{-4} = 7.97 \times 10^{-20}$ N Pressure = force/area = $7.07 \times 10^{-20}/(0.2 \times 0.2) = 8.86 \times 10^{-19}$ Do	Use of $F = \frac{dmv}{dt}$	1	2	3.5.1
(iii)	Number of gas molecules = $100\ 000/8.86 \times 10^{-19}$ = 1.13×10^{23} Number of mols = $1.13 \times 10^{23}/6.02 \times 10^{23}$ = $0.19\ (0.187)$ mols	Answer	1	2	6.1.4
(b)	$\frac{3}{2}kT = \frac{1}{3}mc^{2}$ $T = \frac{2}{9}\frac{m}{k}c^{2} = \frac{2}{9}\frac{4.6 \times 10^{-26}}{1.38 \times 10^{-23}} \times 510^{2} = 193 \text{ K}$	Two temperatures calculated	1 1	3	5.1.4
	pV = nRT	Reasoning to conclusion that number			

Question	Answers	Extra information	Mark	AO	Spec reference
	$T = \frac{pV}{nR} = \frac{100\ 000 \times (0.3)^3}{0.187 \times 8.31} = 1737\ K$ Any 2 from - The temperature suggested by the ideal gas equation is much higher, so the assumptions in the derivation of the number of mols must have produced a number that is too low - The molecules do not all hit the surface at 90°, so the average change in momentum will be smaller - They will collide with other molecules so the time between collisions will be bigger - The force exerted will be much smaller as $F = \frac{dmv}{dt}$, so the number of molecules of gas to produce the same pressure must be much larger	of mols is larger to include: - angles - force - time	1 1		
7 (a)	number of molecules speed/m s ⁻¹	Low temperature peaks at lower speed Higher temperature peak lower Correct shape by eye + axes labelled	1 1 1		5.1.4
(b)	Mean mass of air molecule = $28.97 \times 10^{-3}/6.02 \times 10^{23}$ = 4.8×10^{-26} kg $\frac{1}{2}mc^2 = \frac{3}{2}kT$	Calculation of mass	1		5.1.4

Question	Answers	Extra information	Mark	AO	Spec reference
	$\sqrt{c^2} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times (22.4 + 273.14)}{4.8 \times 10^{-26}}}$	Answer	1		
	= 504 m s ⁻¹				
(c) (i)	$E_{\text{grav}} = -\frac{GMm}{r}$ = energy of a mass <i>m</i> at a distance <i>r</i> from a mass <i>M</i>	Use of equation for EPE	1		5.4.4
	Assuming that the velocity of an object is zero at infinity				
	$\frac{1}{2}mv^2 + \frac{GMm}{2} = 0$				
	2 r r	Manipulation	1		
	$\frac{1}{2}mv^2 = \frac{GMm}{r}$				
	$v = \sqrt{\frac{2GM}{r}}$				
(ii)	Earth:				5.1.4
	$v_{\text{escape}} = (2 \times 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-3} \times 5.97 \times 10^{24} \text{ kg} / 6.378 \times 10^{6} \text{ m})^{0.5}$				
	$v_{\rm escape} = 1.12 \times 10^4 \mathrm{m \ s^{-1}} = 11.2 \mathrm{km \ s^{-1}},$	A	4		
	which is about 22 times the average speed of molecule of the atmosphere, so the gas molecules are not travelling fast enough to escape.	Comparison with mean speed	1		
	The escape velocity of the Moon is only about 5 times greater than the		·		
	average velocity of a gas molecule at 22.4°C.	Comparison with mean speed	1		
	The temperature of the Moon can be about 4 times greater, which would double the average velocity.				
	There would be molecules in the distribution travelling fast enough to escape.	Effect of temperature on speed	1		
		Use of distribution	1		

Question	Answers	Extra information	Mark	AO	Spec reference
8 (a)	Energy transferred/sec = mass/s. c. $\Delta \theta$ = density × vol/s. c. $\Delta \theta$ = 997 × 2.7×10 ⁻³ × 4200 × (45 – 34) = 1.24 ×10 ⁵ J s ⁻¹	Use of equation for SHG and density answer	1		5.1.3
(b)	$\Delta \theta = \text{Energy transferred/sec/ density } \times \text{vol/s. } c$ = 1.24×10 ⁵ /(1.225 × 2.2 × 1000) = 46 °C Temperature of the air leaving = 16 + 46 = 62 °C Assuming all the energy transferred from the water is transferred to the air.	Calculation to find temperature difference Answer Assumption	1 1 1		5.1.3
(c)	Energy is transferred to the material of the pipe, casing of the heater/the air is not heated completely because of convection		1		5.1.1
(d)	A current flows in a coil inside the motor which is in a magnetic field There is a force on each side of the coil causing it to spin.		2		6.3.1
(e)	The coil is a conductor in a magnetic field, so an emf is induced in it when it spins The direction of the emf is in a direction so as to oppose the motion that caused it, so produces an emf that reduces the current (Lenz's law)		1		6.3.1